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Abstract

Multiply sectioned Bayesian networks
(MSBNs) support modular object-
oriented probabilistic inference. In this
paper, we extend MSBNs to include
continuous variables. The issues
related with triangulation and inference
are discussed.
Keywords: MSBNs, Bayesian net-
works, Gaussian BNs, hybrid BNs

1 Introduction

Multiply sectioned Bayesian networks (MSBNs)
[18] provide a framework for probabilistic infer-
ence in distributed multiagent interpretation sys-
tems. MSBNs support object-oriented inference
[5] and have been applied in many areas such as
medical diagnosis [21] and distributed network
intrusion detection [3]. So far, MSBN models
have been limited to include only discrete vari-
ables. Many real-world problems naturally need
both continuous and discrete variables to model
[12, 8], however. Although we can always trans-
form a hybrid model to a discrete one by discretiz-
ing the continuous variables, the computational
complexity of the problem would increase expo-
nentially in the number of continuous variables.
In particular, we have difficulty to set a good
discretization granularity (resolution) before ac-
tually performing inference and knowing the pos-
terior distributions, whereas discretizing a contin-
uous variable to its finest resolution would always
slow down inference. In this paper, we discuss is-
sues related with the triangulation of and the in-
ference with MSBNs that include both continu-

ous and discrete variables, calledhybrid MSBNs.
We assume all continuous variables are normally
distributed and combine linearly. This is because
the normal distribution is ubiquitous in nature and
statistics and its mathematical theory is simple
and tractable. When normally distributed con-
tinuous variables are combined non-linearly, the
distributions may not be closed under some oper-
ations. The standard approach to such problems
is to approximate non-Gaussian distributions pro-
duced with Gaussian distributions [8].

The rest of the paper is organized as follows. An
overview of MSBNs is given in Section 2. In Sec-
tion 3, we discuss belief initialization and updat-
ing in Gaussian MSBNs, and based on the discus-
sion, we investigate the issues related with the tri-
angulation of and the inference with hybrid MS-
BNs in Section 4. More related work is discussed
in Section 5. The conclusion is made in Section
6.

2 Overview of MSBNs

A BN is a triplet (V,G,P ), whereV is a set of
domain variables,G is a directed acyclic graph
(DAG) whose nodes are labeled by elements of
V , andP is a joint probability distribution (JPD)
over V . G qualitatively encodes conditional in-
dependencies inP . In an MSBN, a set ofn > 1
agentsA0, A1, ..., An−1 populates a total universe
V of variables. EachAi has knowledge over a
subdomainVi ⊂ V encoded as aBayesian subnet
(Vi, Gi, Pi). The collection{G0, G1, ..., Gn−1}
of local DAGs encodes agents’ knowledge of do-
main dependencies. Local DAGs should overlap
and agents exchange information via the shared
variables (calledinterface). Definition 1 gives the
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definition ofhypertree, which organizes Bayesian
subnets and agents through the shared variables.
In the following discussion, we use a pair(V,E)
to denote a graphG, whereV denotes the set
of nodes (vertices) inG, andE the set of edges
(links). Edges or links could be directed or undi-
rected.

Definition 1 [18] Let G = (V,E) be a con-
nected graph sectioned into connected subgraphs
{Gi = (Vi, Ei)}. Let these subgraphs be orga-
nized into a connected treeΨ where each node,
called a hypernode, is labeled byGi and each link
betweenGi andGj , called a hyperlink, is labeled
by the interfaceVi ∩ Vj such that for each pair of
nodesGl andGm, Vl ∩ Vm is contained in each
subgraph on the path betweenGl and Gm. The
treeΨ is called a hypertree overG.

In a hypertree, each hyperlink serves as an in-
formation exchange channel between agents con-
nected and is referred to as anagent interface.
From Definition 1, a hypertree has the property
of a junction tree regarding the distribution of the
shared variables among hypernodes. However,
this property alone does not guarantee coherent
message passing along hyperlinks since a hyper-
link defined such does not necessarily d-separate
[14] the two branches it connects. To ensure a
hyperlink d-separates the two hypertree branches
connected, the hyperlink has to be ad-sepset, as
defined in Definition 2.

Definition 2 [18] LetG be a directed graph such
that a hypertree overG exists. A nodex contained
in more than one subgraph with its parentsπ(x)
in G is a d-sepnode if there exists a subgraph that
containsπ(x). An interfaceI is a d-sepset if every
x ∈ I is a d-sepnode.

The overall structure of an MSBN is ahypertree
MSDAG.

Definition 3 [18] A hypertree MSDAGG =⋃
i Gi, where eachGi = (Vi, Ei) is a DAG, is a

connected DAG such that there exists a hypertree
overG and each hyperlink is a d-sepset.

Based on the hypertree MSDAG, an MSBN is de-
fined as in Definition 4, where apotential is a
probability distribution without normalization.

Definition 4 [18] An MSBN M is a triplet
(V,G,P ). V =

⋃
i Vi is the total universe where

eachVi is a subset of variables, called a subdo-
main. G =

⋃
i Giis a hypertree MSDAG where

the nodes of each subgraphGi are labeled by el-
ements inVi. Letx be a variable andπ(x) be all
parents ofx in G. For eachx, exactly one of its
occurrences (aGi containing{x} ∪ π(x)) is as-
signedP (x|π(x)), and each occurrence in other
subgraphs is assigned a unit constant potential.
P =

∏
i Pi is the JPD where eachPi is the prod-

uct of the potentials associated with nodes inGi.
Each tripletSi = (Vi, Gi, Pi) is called a subnet of
M . Two subnetsSi andSj are said to be adjacent
if Gi andGj are adjacent on the hypertree.
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Figure 1: (a) The subnets of a trivial MSBN; (b)
The hypertree organization.

In an MSBN, each agent holds its partial perspec-
tive of the entire problem domain, and has ac-
cess to local evidence sources (sensors). An agent
obtains global evidence by communicating with
other agents. Agents update their beliefs with lo-
cal and global evidence, and then answer queries
or take actions based on the updated beliefs. Fig-
ure 1 illustrates the DAGs of a trivial MSBN in
(a) and their hypertree organization in (b). In (a),
each dotted box represents a Bayesian subnet, and
in (b) each circle denotes a hypernode, and each
rectangular box with rounded corner represents a
hyperlink.

In an MSBN, only the nodes in agent interfaces
arepublic to the corresponding agents. All other
nodes areprivate and known to the respective
agent only. This forms the constraint of many op-
erations in an MSBN, e.g. triangulation [17], and
belief updating [16].

3 Gaussian MSBNs

Before discussing hybrid MSBNs, we first look at
Gaussian MSBNs, where all variables are contin-
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uous.

3.1 Multivariate Gaussian Distributions

In a Gaussian MSBN, all variables are continu-
ous and are assumed to have a multivariate nor-
mal (Gaussian) distribution. LetX be a vector
representing a set of ordered variables. Then the
multivariate normal distribution onX is denoted
by X ∼ N(µ,Σ) (or N(X;µ,Σ)), whereµ is
the mean vector andΣ is the covariance matrix of
X. That is, the probability density function ofX
is

P (x) =
1√

(2π)|X|√|Σ|e
− 1

2 (x−µ)T )Σ−1(x−µ), (1)

which is often written as P(x)=

(2π)−|X|/2|Σ|−1/2exp[−1
2
(x−µ)T )Σ−1(x−µ)].

WhenX degenerates to one variateX, the uni-
variate normal distribution overX is character-
ized by its meanµ and varianceσ2, i.e., X ∼
N(µ, σ2), and

P (x) =
1√
2πσ

e−
(x−µ)2

2σ2

= (2πσ2)−
1
2 exp[− 1

2σ2
(x− µ)2].

We may use the following notation to denote the
joint normal distribution over{X, Y}:

P (X,Y) = N

((
µX

µY

)
,

[
ΣXX ΣXY

ΣYX ΣYY

])
, (2)

whereµX and µY are means ofX andY re-
spectively, andΣXX,ΣXY,ΣYX and ΣYY are
the covariances of the respective vectors.

3.2 From Gaussian Distributions to MSBNs

The following theorems assure Gaussian MS-
BNs can be properly converted from multivariate
Gaussian distributions (refer to [15] for these the-
orems). Theorem 1 says a normal distribution is
closed under linear combinations.

Theorem 1 Let X ∼ N(µ,Σ), β0 ∈ R, β ∈
R|X| and β 6= 0, and σ2

w > 0. Let Y =
β0 + βX + W whereW ∼ N(0, σ2

W ). Then
Y ∼ N(µY , σ2

Y ) where µY = β0 + βµ and
σ2

Y = σ2
W + βΣβT .

It is guaranteed by the following two theorems
that both marginal and conditional distributions
obtained from a joint normal distribution are nor-
mal distributions.

Theorem 2 Let {X,Y} have a joint normal dis-
tribution. Then the marginal distribution overX
is a normal distributionN(µX,ΣXX).

Theorem 3 Let {X,Y} have a joint normal dis-
tribution. Then the conditional distribution
P (X|Y) is a normal distributionN(µ′

X,Σ′
XX),

where µ′
X = µX + ΣXYΣ−1

YY(y − µy) and
Σ′

XX = ΣXX − ΣXYΣ−1
YYΣYX.

From Theorem 3, we get the following corollary
which directly governs the production of condi-
tional distributions from a multivariate Gaussian
for a Gaussian MSBN.

Corollary 1 Let {X, Y} have a joint normal dis-
tribution. Then P (X|Y) is a normal distri-
bution N(β0 + βY, σ2) where β0 = µX −
ΣXYΣ−1

YYµY, β = ΣXYΣ−1
YY, and σ2 =

ΣXX − ΣXYΣ−1
YYΣYX .

From a multivariate Gaussian, the conditional dis-
tribution of a single variateXi given its parents
Y = π(Xi) is

P (xi|π(xi)) = (2πσ2
i )−

1
2 exp[− 1

2σ2
i

(xi−ui)2], (3)

where ui = β0 +
∑

Xj∈π(Xi)
βijxj , β0 =

µi − ΣXiYΣ−1
YYµY, µi is the mean ofXi, βij

is the regression coefficient ofXj on Xi given
π(Xi), andσ2

i = ΣXiXi − ΣXiYΣ−1
YYΣYXi is

the conditional variance ofXi givenπ(Xi). That
is, P (Xi|π(Xi)) ∼ N(ui, σ

2
i ), which is a linear

function of π(Xi) plus Gaussian noise, called a
linear conditional probability distribution (CPD).
Note in the conditional distribution, the mean is
not constant but depends on the values of parents.
With P (Xi|π(Xi)) obtained such, we can prop-
erly assign a potential to every node in a Gaussian
MSBN. Gaussian MSBNs with all linear CPDs
are called linear Gaussian (LG) MSBNs. In this
paper, all Gaussian MSBNs discussed are LGs.

3.3 Subnet Potential Initialization

As required by Definition 4,P (X|π(X)) is as-
signed to only one occurrence that contains the
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whole family ofX. All other occurrences would
be assigned uniform potentials. After such ini-
tial assignments,P =

∏
i Pi. However, after ini-

tial message passing, all uniform potentials will
be updated, andP =

∏
i Pi/

∏
Lj

P (Lj), where
Lj is a d-sepset in the MSBN. This is because for
each d-sepset, we have the same updated belief at
either subnet.

3.4 Belief Updating in Local JTs

Inference in MSBNs is generally performed in
their compiled representations called linked junc-
tion forests (LJFs) [22]. A LJF is a collection of
junction trees (JTs), where each JT corresponds
to a Bayesian subnet of an MSBN. From a lo-
cal JT, we can obtain a JT for each of its inter-
faces by marginalization. The JTs corresponding
to interfaces are calledlinkage trees. A clique
in a linkage tree is called alinkage. A compar-
ison [19] between LJF-based belief propagation
extended from Hugin architecture and extensions
of other inference methods for single-agent BNs
(in particular, the loop-cutset methods and two
stochastic sampling methods) indicates that the
LJF based inference is superior than those alter-
natives. In this section, we review how Gaussian
BNs perform inference using JTs and in the next
section we discuss how local JTs of a LJF ex-
change messages with each other.

3.4.1 Canonical Characteristics

JTs can be used for belief updating in Gaussian
BNs, where clique potentials are represented as
joint Gaussian distributions. In the discussion
above, we represent normal distributions in their
moment forms (characteristics). Normal distribu-
tions can also be represented in their canonical
forms (characteristics) [6]. The canonical repre-
sentationX ∼ C(g,h,K) (or C(X; g,h,K)) of
a normal distribution is interpreted as follows:

C(X; g,h,K)

= exp(−1
2
XT KX + XTh + g)

= exp(−1
2
XT KX + hTX + g).

Let N(X;µ,Σ) = C(X; g,h,K). We have

(2π)
|X|
2 |Σ| 12 exp(−1

2 (x− µ)T Σ−1(x− µ)) =

exp

„

− 1

2
xT Σ−1x + µT Σ−1x − 1

2
µT Σ−1µ − ln(

q

(2π)|X||Σ|)
«

.

So, K = Σ−1,h = Σ−1µ, and g =
−1

2µT Σ−1µ − ln((2π)|X|/2|Σ|1/2). Note the
canonical forms are more general than the
moment forms: the moment characteristics
N(X;µ,Σ) can be obtained from the canoni-
cal characteristics only whenK is positive def-
inite (invertible): Σ = K−1 and µ = Σh.
In Hugin, both representations are supported and
are switched between each other when necessary
since some belief updating operations are easier
to express in moment characteristics and others
are easier to do in canonical ones [11]. How-
ever, the matrix inversion operation involved in
representation shift could introduce loss of preci-
sion since the operation is quite sensitive to com-
putational accuracy [13]. In this paper, we only
present results on canonical characteristics which
can be easily extended to moment characteris-
tics. In particular, although canonical forms are
numerically unstable and an alternative represen-
tation called conditional forms [7] are preferred
in implementation, operations on canonical forms
are easy to follow and can be carried over to con-
ditional forms.

In Theorem 3,

µ′
X = µX + ΣXYΣ−1

YY(y − µy)

= µX − ΣXYΣ−1
YYµy + ΣXYΣ−1

YYy

can be written asµ′
X = β0 + By, whereβ0 =

µX−ΣXYΣ−1
YYµy is a constant vector, andB =

ΣXYΣ−1
YY. Let Σ = Σ′

XX. With the new nota-
tion, the canonical characteristics of CPDs can be
obtained as follows.

SinceP (X|Y)

= c ∗ exp

»

−1

2
(x− β0 − By)T Σ−1(x− β0 − By)

–

= exp

»

−1

2

„

x
y

«T „

Σ−1 −Σ−1B
−BT Σ−1 BT Σ−1B

« „

x
y

«

+

„

x
y

«T „

Σ−1β0

−BT Σ−T β0

«

− 1

2
βT

0 Σ−1β0 + ln(c)

#

,
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wherec = (2π)−|X|/2|Σ|− 1
2 , we have

g = −1
2
βT

0 Σ−1β0 −
|X|
2

ln(2π)− 1
2
ln|Σ|,

h =
(

Σ−1β0

−BT Σ−Tβ0

)
=

(
Σ−1β0

−BTΣ−1β0

)
, and

K =
(

Σ−1 −Σ−1B
−BT Σ−1 BTΣ−1B

)
.

When X only contains a single variable (i.e.,
|X|=1), β0 = β0, B = β, andΣ = σ2 as speci-
fied in Corollary 1. So, the above becomes

g = − 1
2σ

β2
0 −

1
2
ln(2πσ2),

h =
β0

σ2

(
1

−βT

)
, and

K =
1
σ2

(
1 −β

−βT βT β

)
.

Note P (X|Y) can also be represented in vector
(y, x)T as follows:
P (X|Y)

= c ∗ exp
[− 1

2 (x− β0 −By)T Σ−1(x− β0 −By)
]

= exp
[− 1

2

(
y
x

)T (
BT Σ−1B −BT Σ−1

−Σ−1B Σ−1

) (
y
x

)
+

(
y
x

)T (−BT Σ−T β0

Σ−T β0

)
− 1

2βT
0 Σ−1β0 + ln(c)

]
,

wherec = (2π)−|X|/2|Σ|− 1
2 . We have

g = −1
2
βT

0 Σ−1β0 −
|X|
2

ln(2π)− 1
2
ln|Σ|,

h =
(−BT Σ−Tβ0

Σ−T β0

)
=

(−BTΣ−1β0

Σ−1β0

)
, and

K =
(

BT Σ−1B −BT Σ−1

−Σ−1B Σ−1

)
.

3.4.2 Belief Updating Operations

Let C(X; g1,h1,K1) and C(X; g2,h2,K2)
be the two normal distributions onX, and
C(X,Y; g,h,K) be the normal distribution on
{X, Y}, where

K =
[
KXX KXY

KYX KYY

]
, and h =

[
hX

hY

]
.

Then the basic belief updating operations can be
performed as follows [6, 11]:

• Multiplication:
C(X; g1,h1,K1)*C(X; g2,h2,K2)=
C(X; g1 + g2,h1 + h2,K1 + K2);

• Division: C(X;g1,h1,K1)
C(X;g2,h2,K2)

= C(X; g1 −
g2,h1 − h2,K1 −K2);

• Marginalization: Let C(X; g′,h′,K ′) =∫
C(X,Y; g,h,K)dY. It is shown in [6]

that C(X; g′,h′,K ′) is finite if and only if
KYY is positive definite and in particular if
so

g′ = g +
1

2
(|Y| ln(2π) − ln |KYY | + hT

YK−1
YYhY),

h′ = hX − KXYK−1
YYhY, and

K′ = KXX − KXYK−1
YYKYX.

• Instantiation: Variables in every potential for
which we have evidence need to be instan-
tiated since the canonical characteristics for
every such potential would be different. Af-
ter instantiatingY in C(X,Y; g,h,K), we
haveC(X; g′,h′,K ′)

= exp

[
g +

(
x
y

)T (
hx

hy

)(
x
y

)
− 1

2(
x
y

)T (
KXX KXY

KYX KYY

)(
x
y

)]
= exp[(g + hY

Ty − 1
2
yT KYYy) +

xT (hX −KXYy) − 1
2
xT KXXx)].

That is,

g′ = g + hY
Ty− 1

2
yT KYYy),

h′ = hX −KXYy, and

K ′ = KXX.

3.5 Belief Propagation on LJFs

A LJF is intrinsically a two level JT. On its first
level is a set of local JTs corresponding to the
subnets. The set of local JTs is linked via the
shared linkage trees to form the second level JT.
In the second level JT, each node corresponds to
a JT and each separator corresponds to a linkage
tree. Belief updating algorithm on discrete LJFs
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[17], which we callLJFBelProp, consists of two
processes: the collection process and the distri-
bution process. The two processes are analogous
to the two similarly named processes used in JT
belief updating. Their difference is in that belief
updating in LJFs includes two levels: the belief
updating in local JTs and the belief propagation
among local JTs. Belief propagation among local
JTs is the belief updating process on the second
level JT, where message passing is done via the
linkage trees. The updated linkage potentials are
first collected from leaf hypernodes toward a des-
ignated root hypernode and then distributed from
the root hypernode toward the leaf hypernodes.
Each pair of adjacent JTs shares a same linkage
tree, whose potential can always be obtained from
one JT and be absorbed by the other. In particular,
linkage tree potential absorption is actually done
by linkage absorption since the linkage tree sep-
arator potentials would be automatically updated
in local JT belief updating.

Therefore, belief updating operations specified
in Section 3.4.2 can not only be applied to lo-
cal JTs but also to linkage acquirement and ab-
sorption. The belief propagation algorithm for
Gaussian MSBNs, which we callGaussianLJF-
BelProp, can be obtained fromLJFBelPropwith
all its operations replaced with the respective ones
specified in Section 3.4.2.

3.6 Computational Complexity of Inference

Let m be the number of subnets in the system,n
be the maximum number of cliques in a local JT,
q be the cardinality of the largest cliques in local
JTs, andr be the maximum number of linkages in
a linkage tree. In discrete MSBNs, the computa-
tional complexity of inference isO(m(n+2r)dq),
whered is the cardinality of the largest spaces of
discrete variables. It is exponential in the size of
the largest cliques. However, in Gaussian MS-
BNs, the computational complexity of inference
becomesO(m(n + 2r)q3) since belief updating
in a clique can be done inO(q3), which is poly-
nomial in the size of the largest cliques. This mo-
tivates us to perform belief updating in Gaussian
MSBNs instead of MSBNs with continuous vari-
ables discretized.

4 Hybrid MSBNs

In this section, we discuss triangulation of and be-
lief updating in hybrid MSBNs.

4.1 Strong Triangulation

Among hybrid BNs, the most widely studied are
conditional linear Gaussian (CLG) BNs [6, 13, 9,
7, 1], where discrete nodes do not have any con-
tinuous parents, and the CPDs of continuous vari-
ables are linear given any configuration of their
discrete parents. In CLG BNs, for discrete nodes
with discrete parents, we use conditional proba-
bility tables (CPTs) to represent their dependen-
cies; for continuous nodes with continuous par-
ents, we use linear Gaussian CPDs; for contin-
uous nodes with discrete parents, we use linear
Gaussian CPDs for each configuration of their
parents. To perform exact belief updating with
JTs, CLG BNs generally need to bestrongly tri-
angulated[6]. A hybrid BN is strongly triangu-
lated (decomposable) if and only if it is triangu-
lated and does not contain any paths between two
discrete nodes passing through only continuous
nodes [2], calledforbidden paths. Strong triangu-
lation can be obtained by eliminating continuous
nodes before any discrete nodes. Unfortunately,
in the case of (hybrid) MSBNs, LJFs need to be
obtained by eliminating non-interface nodes first
in each subnet triangulation relative to a neigh-
bor [17]. This indicates (1) no continuous vari-
ables should be allowed in the d-sepsets in gen-
eral; and more seriously (2) all continuous vari-
ables in MSBNs need to be eliminated before any
discrete variables. Next, we investigate any solu-
tions for these problems.

In LJFs, all shared variables have consistent link-
age tree structures. This is achieved by a two pro-
cess triangulation algorithm [17], which we call
MSBNTriLJF. In its first process, subnets are tri-
angulated in a depth-first traversal order of the
hypertree. If we direct each hyperlink based on
the visited order of the two hypernodes it con-
nects, we get a directed hypertree. In a subnet,
one triangulation is performed relative to each of
its interfaces with its children. Interface fill-ins
produced in the parent subnets would be passed
to the child subnets and the child subnets would
be triangulated based on such fill-ins received.
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When the traversal control returns, the child sub-
nets would be triangulated relative to its interface
with its unique parent, and any interface fill-ins
produced would be passed to the parent subnet
and any relevant ancestor subnets. Note in this
process, interface fill-ins produced from an an-
cestor subnet would not be passed to any descent
subnets than children.1 In its second process, all
fill-ins produced locally or received from other
subnets in the first process would be distributed
from ancestor subnets to all descent subnets start-
ing from the root hypernode in a depth-traversal
order of the hypertree. In this process, all sub-
nets reach their consistency in their fill-ins for any
shared variables. Such triangulation assures (1)
by marginalization, we can always obtain inter-
face potentials from local JTs; and (2) only one
local JT is needed at each subnet for both local
belief updating and message passing among JTs.

We generally cannot applyMSBNTriLJF to hy-
brid MSBNs since it would clash with our desire
to eliminate continuous variables before any dis-
crete variables if any interfaces contain contin-
uous variables. However, the interfaces can be
modeled in different ways [23]. The interfaces
could be modeled such that only discrete vari-
ables exist. If so, we only need to add one more
constraint to the triangulation performed in the
first process ofMSBNTriLJF: continuous nodes
should be eliminated before any discrete nodes.
We call such modified algorithmhybridMSBN-
TriLJF. Below we show why the new constraint
only needs to be followed locally in each subnet
instead of globally in the entire MSBN.

We eliminate continuous variables before discrete
variables because it is sufficient to ensure a hy-
brid BN is strongly triangulated. The algorithm
hybridMSBNTriLJFensures all local subnets are
strongly triangulated. We only need to show it
also makes the entire MSBN strongly triangu-
lated. The entire MSBN is indeed strongly trian-
gulated because there do not exist any forbidden
paths across discrete interfaces.

Another issue regardinghybridMSBNTriLJF is
the determination of thestrong root JT. In a JT
from a strongly triangulated hybrid BN, astrong
root is a nodeR satisfying the following property:

1It is presented so in [17, 18], though not necessary.

for any pair of adjacent nodesV,W on the JT with
W closer toR thanV ,

(V \W ) ⊆ Γ ∨ (V ∩W ) ⊆ ∆

holds, whereΓ are all the continuous vari-
ables and∆ are all the discrete variables. The
CollectEvidenceand theDistributeEvidencepro-
cesses of JT belief propagation [4] need to start
from a strong root to ensure when a message is
sent towards the root, no continuous variables
are on the separator or only continuous vari-
ables need to be marginalized out, which is called
strong marginalization. Strong marginalization
is opposed toweak marginalizationwhich col-
lapses (approximates) a mixture of Gaussians into
(by) a single Gaussian. Weak marginalization
would not be possible on a potential not repre-
sented by a mixture of Gaussians (with finite first
two moments: the mean vector and the covari-
ance). In belief propagation with strong root,
marginalization in theDistributeEvidencepro-
cess is not guaranteed to be strong. However,
the strong marginalization in theCollectEvidence
process would ensure a weak one is always pos-
sible inDistributeEvidenceand the potentials on
all cliques are consistent after belief updating.

Algorithm hybridMSBNTriLJF guarantees that
each local JT in a LJF produced has a strong root.
For the similar reason, we need a strong root JT
in the LJF. It turns out every local JT in the LJF is
a strong root JT because any pair of adjacent local
JTs only shares discrete variables.

Based on the discussion above, we have Proposi-
tion 1.

Proposition 1 Discrete interfaced MSBNs would
be strongly triangulated byhybridMSBNTriLJF.
Any local JTs in the resultant LJFs are strong root
JTs.

4.2 Belief Propagation

Among hybrid MSBNs, we focus on CLG MS-
BNs, where discrete nodes do not have any con-
tinuous parents and the CPDs specified for con-
tinuous nodes are linear given any configuration
of their discrete parents, if any. Specifically, sim-
ilar to CLG BNs, for discrete nodes with dis-
crete parents, we use conditional probability ta-
bles (CPTs) to represent their dependencies; for

Proceedings of IPMU’08 359



continuous nodes with continuous parents, we use
linear Gaussian CPDs; for continuous nodes with
discrete parents, we use linear Gaussian CPDs
for each configuration of their parents. In the
initialization of subnet potentials,P (X|π(X)) is
only assigned to one occurrence that contains the
whole family ofX. All other occurrences would
be assigned uniform potentials. The belief propa-
gation algorithm for CLG MSBNs, which we call
hybridLJFBelProp, should work on LJFs from
strongly triangulated MSBNs. It is similar to
LJFBelPropor GaussianLJFBelPropbut needs to
consider the types of nodes (continuous or dis-
crete) involved in CPDs or JPDs when manipu-
lating them.

4.3 Computational Complexity of Inference

With parameters specified as in Section 3.6 except
let q1 be the maximum number of discrete nodes
in a local JT andq2 be the maximum number of
continuous nodes in a local JT. The computational
complexity of inference withhybridLJFBelProp
would beO(m(n+2r)dq1q3

2), which is exponen-
tial in the maximum number of discrete nodes in
a clique and polynomial in the maximum number
of continuous nodes in a clique.

5 Discussion

In [20], an alternative run-time structure for be-
lief propagation in MSBNs, calleddouble-linked
junction forests (DLJFs), is presented. In DLJFs,
a junction forest (JF) is used for message pass-
ing and belief updating at each subnet. A ma-
jor difference between DLJFs and LJFs is that in
DLJFs, linkage trees may not be consistent for
different directions. However, DLJFs still need
to be obtained by eliminating non-interface nodes
first, which may clash our desire to first elimi-
nate continuous nodes if there are any continuous
nodes in interfaces.

In [12] and [10], an approximate method and an
exact method are proposed respectively for infer-
ence with non-CLG hybrid BNs where contin-
uous parents may have discrete children. Both
work on JTs from strongly triangulated BNs, so
we have similar difficulty to generally extend
them to non-CLG hybrid MSBNs.

6 Conclusion

In this paper, we extend MSBNs to contain con-
tinuous variables. For Gaussian MSBNs, we
show belief propagation can be properly per-
formed on LJFs and its computational complexity
is presented. For hybrid MSBNs, we show strong
triangulation and inference can be properly done
on discrete interfaced MSBNs and the computa-
tional complexity of inference is provided.
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