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Abstract

This paper proposes a new approach
for decision making under uncer-
tainty based on in°uence diagrams
and possibility theory. The so-called
possibilistic in°uence diagrams ex-
tend standard in°uence diagrams in
order to avoid di±culties attached
to the speci¯cation of both proba-
bility distributions relative to chance
nodes and utilities relative to value
nodes. In fact, generally, it is easier
for experts to quantify dependencies
between chance nodes via possibility
distributions and to provide a set of
numerical utilities and a possibility
distribution relative to each conse-
quence and each utility.

Keywords: decision theory, in°u-
ence diagrams, possibility theory.

1 Introduction

Graphical decision models provide e±cient
decision tools. In fact, it allow a compact and
a simple representation of decision problems
under uncertainty. In°uence diagrams (IDs)
(Howard and Matheson, 1981) are a popular
framework representing a decision maker's be-
lief and preferences about a sequence of deci-
sions to be made under uncertainty [8]. An ID
is composed by a graphical component which
is a directed acyclic graph (DAG) and a nu-
merical component quantifying this DAG.

In this paper, we are interested in these de-
cision models initially proposed by [8]. The
evaluation of IDs generates optimal decisions
while maximizing the decision maker's ex-
pected utilities. Within proposed evaluation
algorithms, we can distinguish direct methods
[12] which operate directly on IDs or indirect
methods [3, 10, 11, 15] which transform them
into a secondary structure and then evaluate
these structures.

The quanti¯cation of IDs can be done by ex-
perts, in such a case they express their uncer-
tainty relative to variables by probability dis-
tributions and their preferences through utili-
ties. Nevertheless, in most real problems it is
not obvious to provide exact probability dis-
tributions and it is easier to express uncer-
tainty qualitatively by ranking di®erent states
of the world.

Moreover, decision makers may encounter
several di±culties when expressing their utili-
ties and it may be more °exible to allow them
providing a set of utilities and a possibility
distributions relative to each utility and each
consequence.

In such situations, standard IDs cannot be ap-
plied, thus, our idea is to extend them using
a non-classical theory of uncertainty for spec-
ifying their numerical component. Namely,
we have opted to use possibility theory, ini-
tially proposed by Zadeh [14] and developed
by Dubois and Prade [4] since it o®ers a natu-
ral and simple framework to handle imperfect
data.

In previous works, we have developed qual-
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itative possibilistic IDs [7] i.e. those where
dependencies between chance nodes are ex-
pressed via qualitative possibility distribution
and value nodes are quanti¯ed using ordinal
utility. In addition, we have proposed qual-
itative possibilistic IDs based on qualitative
binary possibilistic utility [6] when the deci-
sion maker should provide a preferential re-
lation between di®erent consequences, an or-
dinal scale and he should classify himself as
either pessimistic or optimistic or neutral.

In this paper, we will develop another vari-
ant of possibilistic IDs where decision makers
can provide a set of utilities and a possibility
distribution relative to each utility and each
consequence.

The success of indirect methods in the stan-
dard framework, has motivated us to propose
an indirect method to evaluate these mod-
els. More precisely, the proposed evaluation
method is based on the transformation of pos-
sibilistic IDs into possibilistic networks [1] and
on making inference in this secondary struc-
ture using the appropriate propagation algo-
rithms.

This paper is organized as follows: Section 2
provides the necessary background on possi-
bility theory. Section 3 presents possibilistic
IDs. Section 4 proposes an indirect evalu-
ation method to generate optimal decisions.
Finally, section 5 proposed a conclusion and
future work.

2 Background of possibility theory

Possibility theory was initially proposed by
Zadeh [14] and was developed by Dubois and
Prade [4]. This section brie°y recalls basic el-
ements of possibility theory, for more details
see [4].

The basic buildings block in the possibility
theory is the notion of possibility distribution
denoted by ¼, it is a mapping from the uni-
verse of discourse denoted by − = f!1:::!ng
to the unit interval [0; 1].

This scale has two interpretations, a quantita-
tive one when the handled values have a real
sense and a qualitative one when the handled

values re°ect only an ordering between the
di®erent states of the world. In the ¯rst case,
the product operator can be applied while in
the second one, the min operator is used.

A possibility degree is the value from the in-
terval [0; 1] associated to each element ! of −.
The possibility measure of any subset Ã µ −
is de¯ned as follows:

¦(Ã) = max!2Ã¼(!) (1)

A possibility distribution is said to be normal-
ized, if max!2Ã¼(!) = 1.

In the possibilistic framework, extreme forms
of partial knowledge can be represented by
Complete knowledge i.e. 9!i 2 −; s:t
¼(!i) = 1 and !j 6= !i; ¼(!j) = 0 and the
total ignorance i.e. 8!i 2 −; ¼(!i) = 1:

In the possibilistic approach, there are di®er-
ent combinations modes to assure the fusion
of informations. The choice of the appropri-
ate combination mode is related to the re-
liability of information's sources. The most
known combination operators are the sym-
metric ones, namely the conjunctive and the
disjunctive operators:

1. The conjunctive fusion: If all sources
are reliable, then we can combine
them using the intersection, the con-
junctive operator

N
is de¯ned as follows:

8 ! 2 −; ¼^(!) =
O

i=1::n

¼i(!) (2)

where ¼i be the possibility distribution
supplied by source i.
N

is a t-norms such that minimum or
product or linear product according to
the uncertainty scale's interpretation. In-
deed, the min operator is supported by
both quantitative and qualitative possi-
bility distributions.

However, the use of the product opera-
tor assumes that possibility degrees are
numerical.

2. The disjunctive fusion: This mode of
combination is applied when it is known
for sure that at least one of the sources
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is reliable but it is not known which one.
The disjunctive operator

L
is de¯ned as

follows:

8 ! 2 −; ¼_(!) =
M

i=1::n

¼i(!) (3)

L
is a t-conorms such that maximum

or probabilistic sum or Lukasievicz ac-
cording to the uncertainty scale's inter-
pretation. Indeed, all of these t-conorms
can be applied in the quantitative set-
ting. However, only the maximum op-
erator can be applied in the qualitative
setting.

The conditioning represents a special case of
informations fusion. Indeed, it consists in re-
vising our initial knowledge, represented by
a possibility distribution ¼, which will be
changed into another possibility distribution
¼0 = ¼(:jÃ) with Ã6= ; and ¦(Ã) > 0.

The two interpretations of the possibilistic
scale induce two de¯nitions of the condition-
ing:

² Min-based conditioning relative to the
ordinal setting:

¼(!jmÃ) =

(
1 if ¼(!) = ¦(Ã) and ! 2 Ã

¼(!) if ¼(!) < ¦(Ã) and ! 2 Ã
0 otherwise

(4)

² Product-based conditioning relative to
the numerical setting:

¼(!jpÃ) =

½
¼(!)
¦(!)

if! 2 Ã

0 otherwise
(5)

3 Possibilistic in°uence diagrams

Few works exist on possibilistic networks and
existing ones concern reasoning under uncer-
tainty without considering the decision aspect
[1, 2].

Recently, Sabbadin et al. [5] have proposed
possibilistic IDs using optimistic and pes-
simistic utilities [4] for the quanti¯cation of
value nodes. Nevertheless, Giang et al. [6]
noted that this utility framework is based on
axioms relative to uncertainty attitude con-
trary to the VNM axiomatic system [9] based

on risk attitude, which does not make a sense
in the possibilistic framework since it repre-
sents uncertainty rather than risk. Moreover,
to use pessimistic and optimistic utilities, the
decision maker should classify himself as ei-
ther pessimistic or optimistic which is not al-
ways obvious. To overcome these limitations,
Giang et al. [6] propose a more generalized
framework based on the axiomatic system of
possibilistic binary utility.

In order to bene¯t from the simplicity of stan-
dard IDs and from the suitability of possi-
bility theory for modeling qualitative uncer-
tainty and utility, we have de¯ned possibilistic
in°uence diagrams [7].

Possibilistic IDs are a possibilistic adaptation
of standard IDs, as the latter they have two
components:

1. A graphical component de¯ned by a
directed acyclic graph (DAG), denoted
by G(N;A), where N is the set of chance,
decision and value nodes and A is the set
of arcs in the directed graph.

2. A numerical component evaluating
di®erent dependencies between chance
nodes and utilities for value nodes.

² For each chance node Ci, we should
provide conditional possibility de-
gree ¦(cij j pa(Ci)) of each in-
stance cij of Ci in the context of
each instance of its parents. In or-
der to satisfy the normalization con-
straint, these conditional distribu-
tions should satisfy, 8pa(Ci):

maxcij¦(cij j pa(Ci)) = 1; (6)

Note that for root chance nodes (i.e.
(Pa(Ci) = ;), 6 corresponds to
maxcij¦(cij) = 1.

² For each value node Vi, there are
several ways to represent decision
maker's preferences on the set of
consequences, namely using cardi-
nal utility, ordinal utility, possibilis-
tic utility or as well as a compound
utility.
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Note that likewise standard IDs, de-
cision nodes in possibilistic IDs are
not quanti¯ed.

Di®erent combinations between the
quanti¯cation of chance and utility
nodes o®er several kinds of possibilistic
IDs which can be regrouped into three
principal classes:

² Product-based possibilistic IDs
where both dependencies between
chance nodes and value nodes are
quanti¯ed in a genuine numerical
setting.

² Min-based possibilistic IDs or qual-
itative possibilistic ID where both
dependencies between chance nodes
and value nodes are quanti¯ed in a
qualitative setting used for encoding
an ordering between di®erent states
of the world.

² Mixed possibilistic IDs where depen-
dencies between chance nodes and
value nodes are not quanti¯ed in the
same setting.

Product-based and min-based possibilis-
tic IDs represent homogeneous possibilis-
tic IDs and mixed possibilistic IDs are the
heterogeneous ones.

In a previous study, we have developed
qualitative possibilistic IDs which repre-
sent one case of homogeneous ones [7].

In this work, we propose another case of
these possibilistic IDs when dependencies
between chance nodes are expressed by a
quantitative possibility distributions.

For each value node, the decision maker
should provide a set of numerical utilities,
denoted by UT , which can occured.

However, the decision maker is unable
to determine the exact value of utility of
each consequence. Namely, they can't af-
fect each utility UTi from the set UT to
the appropriate consequence.

Indeed, the decision maker should de¯ne
a possibility distributions relative to each
consequence x and to each utility UTi.

These possibility distributions should
satisfy, 8x 2 X :

maxUTi2UT¦(U(x) = UTi) = 1 (7)

Example 1 Let us state a simple decision
problem represented by a possibilistic ID as
represented in ¯gure 1. It contains 3 chance
nodes (A;B;C), 1 decision node (D) and 1
value node (V ).

 

A B C 

D V 

Figure 1: An example of in°uence diagram

The possibility distributions for the chance
nodes A, B and C are presented in table 1.

For the utilities, DMs a±rm that the possible
values of utilities are f4, 7, 8, 10g.

For the sake of simplicity we will denote
(U(A;D) = 4) by U1, (U(A;D) = 7) by U2,
(U(A;D) = 8) by U3 and (U(A;D) = 10) by
U4.

Table 1: A priori and conditional possibility
distributions for chance nodes

A ¦(A) A B ¦(BjA) B C ¦(CjB)
T 1 T T 0.9 T T 1
F 0.6 F T 0.2 F T 0.3

T F 1 T F 0.2
F F 1 F F 1

The possibility distribution relative to each
consequence and utility is represented by ta-
ble 2:

Table 2: The possibility distribution
¦(U(A;D) = UTi)

A D ¦(U1) ¦(U2) ¦(U3) ¦(U4)
T d1 0.2 0.1 0.3 1
F d1 1 0.1 0.2 0.1
T d2 0.6 0.1 0.3 1
F d2 0.5 0.1 0.3 1
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4 Evaluation of possibilistic

in°uence diagrams

Given a possibilistic ID, we should evaluate
it in order to generate optimal decisions. As
we have mentioned in the introduction, there
are two approaches to evaluate standard IDs,
namely, direct and indirect ones.

The evaluation of possibilistic IDs, proposed
in [5], is based on an indirect evaluation
method which transforms them into decision
trees. Such evaluation method was not suc-
cessful in the probabilistic framework since,
contrary to those based on Bayesian networks,
it does not use independencies encoded by IDs
to save some computations since decision trees
are not able to represent independencies [15].
This argument remains available in the pos-
sibilistic framework, as it only concerns the
graphical component which is the same in the
two frameworks.

In addition, direct evaluation methods [12]
require heavy computations since they are
based on arc reversal and node deletion, con-
trary to indirect ones which are based on
the transformation of IDs into Bayesian net-
works. This explains the great development
of indirect methods in the probabilistic case
[3, 10, 11, 15].

The success of indirect evaluation methods for
standard IDs, motivates us to develop an in-
direct evaluation method for possibilistic IDs.
Our choice is reinforced by the fact that a
possibilistic counterpart of Bayesian networks
has been developed as well as their propaga-
tion algorithms [1].

More precisely, we will develop a possibilis-
tic counterpart of Cooper's method [3] for the
particular case of in°uence diagram with a
unique value node, since it represents the ba-
sis of existing indirect methods.

Thus, the principle of our evaluation algo-
rithm is to transform decision and value nodes
into chance nodes in order to obtain a pos-
sibilistic network, and then to use this sec-
ondary structure to compute maximal ex-
pected utilities via a propagation process.
These two major phases are detailed in what

follows.

4.1 Transformation phase

This phase consists in transforming decision
and value nodes into chance nodes.

4.1.1 Decision nodes transformation

Each decision nodeDi in the possibilistic ID is
transformed into a chance node which should
be quanti¯ed. In the probabilistic case, this
quanti¯cation is ensured by an equi-probable
distribution. Nevertheless, this is not really
appropriate, since equi-probability represents
randomness rather than total ignorance. This
problem can be overcome in the possibilistic
framework where our ignorance about the new
chance node can be suitably represented via
a uniform possibility distribution. More for-
mally:

¦(dij jp pa(Di)) = 1; 8dij ; pa(Di) (8)

Example 2 The ID presented in ¯gure 1 has
one decision node D. The possibility distribu-
tion of the new chance node D obtained by 8
is presented in table 3:

Table 3: The possibility distribution ¦(D j C)
C D ¦(D j C)
T d1 1
F d2 1
T d2 1
F d1 1

4.1.2 Value node transformation

The ¯rst step is to transform numerical util-
ities (UTi) into a possibility distribution by
rescaling the set of numerical utilities into
the unit interval [0,1] as follows, 8pa(V ) 2
Pa(V ) :

¦(v = T jp pa(V )) =
UT (pa(V ))¡ UTmin
UTmax ¡ UTmin

(9)

¦(v = F jp pa(V )) =
UT (pa(V ))¡ UTmax
UTmin ¡ UTmax

(10)

where UTmax and UTmin are the maximal and
the minimal utility levels in UT .
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Indeed, we have two informations about each
consequence x, since it is characterized by two
possibility degrees i.e. the new possibility dis-
tribution issued by applying (9 and 10) the
possibility distribution ¦(Ui) given by DMs.

Our idea is to merge these two informations
using the product operator because it con-
cerns a conjunctive fusion in quantitative set-
ting presented in section 2.

Then, for each consequence we have several
possibility levels relative to each value of util-
ity. Namely, the number of possibility levels is
equal to the number of utility in the set UT .

To combine these several possibility levels, the
max operator will be used as it's matter of a
disjunctive fusion in a quantitative setting as
presented in section 2.

Note that the resulting possibility distri-
bution relative to the new chance node V
may be sub-normalized. In order to satisfy
the normalization constraint, the obtained
possibility distribution should be transformed
as follows: 8pa(V ) 2 Pa(V ), 8v 2 fT; Fg

If max(¦(vjppa(V ));¦(:vjppa(V ))) = ¦(vjppa(V ))

) ¦(vjppa(V )) = 1.

Otherwise: ) ¦(vjppa(V )) =
¦(vjppa(V ))
¦(:vjppa(V ))

Example 3 Let us present the transforma-
tion of the possibilistic ID presented in exam-
ple 1. The obtained possibilistic network is
presented in ¯gure 2.

 

A B C 

D V 

Figure 2: The obtained possibilistic network

At the beginning, the set of numerical utilities
is transformed into a possibility distribution
using 9 and 10 as presented in table 4.

As we have said before, each consequence
has two informations: ¦(V j A;D) and
¦(Ui) 8i 2 f1; 2; 3; 4g.

Table 4: The transformation of the utilities
into a possibility distribution

UT(A,D) V ¦(V j A;D)
4 T 0
7 T 1/2
8 T 2/3
10 T 1
4 F 1
7 F 1/2
8 F 1/3
10 F 0

Let us denote ¦(V j A;D) ^ ¦(Ui) by ¦Vi ,
8i 2 f1; 2; 3; 4g.

Namely, ¦Vi represents the possibility dis-
tribution issued by the conjunctive fusion of
these informations using the product operator
as presented in table 5.

Table 5: The conjunctive fusion

V A D ¦V1
¦V2

¦V3
¦V4

T T d1 0 0.05 0.2 1
T F d1 0 0.05 0.13 0.1
T T d2 0 0.05 0.2 1
T F d2 0 0.05 0.2 1
F T d1 0.2 0.05 0.1 0
F F d1 1 0.05 0.066 0
F T d2 0.6 0.05 0.1 0
F F d2 0.5 0.05 0.1 0

For each consequence we have four choices (as
presented in table 5), the max operator will be
used for the disjunctive fusion as presented in
table 6.

Table 6: The possibility distribution of the
value node V

V A D ¦(V j A;D)
T T d1 1
T F d1 0.13
T T d2 1
T F d2 1
F T d1 0.2
F F d1 1
F T d2 0.6
F F d2 0.5
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4.2 Propagation phase

The possibilistic network issued from the
transformation phase can be used to generate
optimal decisions by computing the Maximal
Expected Utility (MEU) relative to each de-
cision node. This computation is ensured by
selecting and applying the appropriate propa-
gation algorithm according to the DAG struc-
ture.

The computation of the MEU starts by the
last decision node Dm to the ¯rst one D1. For
the nodeDi, we should integrate already com-
puted optimal decisions i.e. those relative to
D1; ::;Di¡1. More formally, for each decision
Di, let:

P (Di; E) = (¦(v = T j Pa(V ))¦(Pa0(V ) j dij ; E)).

where Pa0(V ) denotes the set of chance nodes
in Pa(V ) and E denotes the set of evidence.

Note that ¦(pa0(V ) j dij; E)) is computed
via the product-based propagation algorithm
in quantitative possibilistic networks. In-
deed, two product-based propagation algo-
rithms have been de¯ned according to the na-
ture of the DAG in the possibilistic causal net-
work [1]. Namely, the possibilistic adaptation
of the centralized version of Pearl's algorithm
is used when the DAG is singly connected,
and the possibilistic adaptation of junction
trees propagation are appropriate for multi-
ply connected DAGs.

Once P (Di; E) is computed for each decision
Di we can compute the MEU as follows:

MEU(Di; E) = maxdij§pa0(V )P (Di; E) (11)

Example 4 Let us continue with the same
example. Suppose that we receive a certain
information saying that the variable C takes
the value T .

Since the obtained possibilistic network pre-
sented in ¯gure 2 is a multiply connected
DAG, the possibilistic adaptation of junction
trees propagation is used to compute
¦(A j D;C = T ) as presented in table 7.

Finally, these values are used to apply equa-
tion (11) to compute the MEU which is equal
to 0:81. Then, we can conclude that the opti-
mal decision D¤ is d1.

Table 7: The computation of ¦(A j D;C = T ))

A D C ¦(A j D;C = T ))
T d1 T 1
F d1 T 0.2
T d2 T 1
F d2 T 0.19

5 Conclusion

This paper proposes a new approach for de-
cision making under uncertainty using IDs in
the possibilistic framework.

Indeed, dependencies between chance nodes
are quanti¯ed using possibility distributions.
Then, decision makers should de¯ne for each
value node a set of possible numerical utili-
ties which are characterized by a possibility
distribution relative to each consequence and
each utility.

To evaluate these possibilistic IDs, we have
proposed an indirect evaluation method based
on information fusion in the possibilistic set-
ting and on Cooper's evaluation method.

The proposed approach, has been imple-
mented in a Possibilistic In°uence Diagram
Toolbox (PIDT) which can be seen as a deci-
sion support system.

As a future work, we can ¯rst distinguish a
direct improvement of our proposal concern-
ing possibilistic IDs with several value nodes
to deal with multi objective decision problems
when uncertainty is modeled in a possibilistic
setting.

An interesting line of research will be to ex-
tend our work to mixed in°uence diagrams
in order to treat the case where experts and
decision makers are heterogeneous i.e. they
express their uncertainty in both qualitative
and quantitative setting.

Another line of research will be to use our
possibilistic decision models in a real decision
problem. We are in particular interested by
the semantic web domain.

Indeed, an interesting work about the con-
struction of a retrieval model based on IDs
has been developed [13]. This model aims to
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ensure the e±ciency and the personalization
of the research process in the web.

In fact, the presented model is based on stan-
dard in°uence diagrams in order to provide to
the user a suitable and a pertinent informa-
tion according to his requirement.

Our idea is to use possibilistic IDs to con-
struct this model, since the user is not able
to de¯ne his utility by numerical values.
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