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Abstract 

This paper studies the fusion of several sources 
with belief functions. Different operators have 
been defined but they have problems with 
conflicting data: rules are either very imprecise, 
or very sensitive. Discounting factors enable to 
weight the influences of sources, and solve some 
problems, but we have to estimate correctly 
these factors. We propose to estimate them from 
the conflicts between the sources and from past 
knowledge about the qualities of sources. With 
the assumption that conflicts come from 
defective sources, an algorithm is proposed to 
detect such sources and to lower conflicts 

 

Keywords: belief functions, fusion. 

1     Introduction 

With belief functions we can represent uncertain 
variables, mix up several sources of information, 
and take decisions [1,17, 21]. This paper deals 
with the fusion problem [4, 5, 13, 20]. 
Several rules of fusion have been defined. For 
example a conjunction can be used, when we 
assume that all sources are reliable. Usually 
fusion rules cannot really cope with conflicting 
information, because results are very imprecise 
or undefined. Read [23] for a survey as well as a 
classification of many fusion rules. In this paper 
we propose to use the rule of Dempster which 
has firm theoretical roots. However, prior to the 
fusion step, we use the discounting approach to 
alter the sources when they are unreliable. This 
approach associates to each source a discounting 
factor to quantify the degree of confidence we 
have in it. This way we can precisely weight the 

influence of a source, and this may solve some 
problems. However the meaning of such a 
discounting factor is a complex issue: on the one 
hand, when a fusion is carried out, a source can 
agree or disagree with the others. If sources 
agree, we will have a better confidence in what 
they claim, and they will get a better reliability. 
On the other hand, we may have at a given time 
some past knowledge about the quality of a 
source.  
 
Usually in the literature these two notions are 
kept away and the discounting approach does 
not handle very well conflicting sources if it is 
based on wrong discounting factors (in case of 
defective sources for example). In this paper we 
claim that both static and dynamic reliabilities 
must be used in order to correctly estimate 
discounting factors. An algorithm combining 
these two reliabilities is presented in order to 
improve fusions.  
 
The mechanism was previously introduced in 
paper [2] dealing with possibility theory. The 
difference between static and dynamic 
reliabilities was also introduced independently 
by Gua et al [8] who speak of static and 
dynamic discounting factors. They also 
introduced a slightly different combination 
between static and dynamic reliabilities. 
 
However their paper is mainly focused on the 
estimation of the static reliability by a training 
step, and they compare their results with other 
approaches. The dynamic component of the 
reliability is used in a single example without 
any further analysis. 
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In this paper we propose a mechanism detecting 
defective sources. Indeed it is assumed that 
conflicts come from defective sources: those 
having a high reliability factor, but also a high 
conflict with other reliable sources. 
 
The second part presents the rule of Dempster 
and similarity relations between beliefs. We 
assume that readers are familiar with belief 
functions. The third part presents the 
discounting approach and the new algorithm. 
Then two examples are tackled. The first aims to 
compare previous rules of fusion. The second 
involves sensors with time-varying static 
reliabilities. This example highlights the 
detection part of our algorithm.  

2     Belief functions 

Given a frame of discernment X  and two basic 
belief masses 1m  and 2m , a belief m  can be 

computed by the conjunctive rule *⊕  [17]: 

 *
1 2( ) ( ) ( )

i j

i j
A B A

A X

m A m A m B⊕
∩ =

∀ ⊂
= ∑  (1) 

The closed world assumption is taken. Therefore 
a step of normalization is introduced with the 
rule of combination of Demspter ⊕ : 
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1 2
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( )
1 ( ) ( )
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i j

i j
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∑

∑
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The amount ( )*
1 2( ) ( ) ( )

i j

i j
A B

C m m m A m B⊕
∩ =∅

= ∅ = ∑  

is introduced to assess in what extent sources are 
conflicting. When this amount is too high, it is 
possible to reject the hypothesis of the closed 
world and choose the open world assumption.  
 
The rule of Dempster cannot guarantee the 
continuity of the result. For example take two 
sources: ( )1 0.99m A =  and ( )1 0.01m B = , 

( )2 0.99m C =  ( )2 0.01m B = . We obtain: 

( ) 1m B⊕ = . Then now consider ( )1 1m A =  and 

( )2 1m C = . There is only a small variation in the 

data. However the result is totally different, and 
we cannot even get m⊕  since ( )* 1m⊕ ∅ = .  

 
Smets interprets high values of * ( )m⊕ ∅  as a high 
conflict and request an expert system of some 
sort to solve this problem [23]. In this paper, we 

propose such a system, based on the discounting 
approach. 
 
It will use a distance between two belief 
functions. First let us introduce the operator 
BetP , to obtain the so-called pignistic 
probabilities [22]. Given a basic belief mass m , 
possibly not normalized, we obtain: 

 [ ] ( )
( )

( )
1 ( )A x

x X

m A
BetP m A

A m⊃

∀ ∈

=
− ∅∑

 (3) 

with B  the number of elements of B . Now the 

similarity between two measures im  and jm  is 

defined by the following relation: 

 [ ]( )min ( ), ( )ij i j
x X

r BetP m x BetP m x
∈

 =  ∑  (4) 

It is close to the similarity defined by Tessem 
[16]. We could also use 

[ ]1 0.5 ( ) ( )ij i j
x X

r BetP m x BetP m x
∈

 = − −  ∑ , or any 

other similarities previously defined [16]. In 
[16] a solution based on ( )1 C m−  is favored. A 

distance can be computed from a similarity by: 
 ( ), 1i j ijd m m r= −  (5) 

3        Estimating discounting factors 

3.1     Discounting factors 

The discounting approach assumes that the 
quality of a source is represented by a scalar. 
Then this scalar is used to alter the source and to 
obtain a new reliable source. So this new source 
can be used by the rule of Combination (2) 
without worrying about the initial quality. The  
discounting [ ]tD m  of m  by the weight t  is 

given by: 

 
[ ]

[ ]
, , ( ) ( )

( ) ( ) 1

t

t

A X A X D m A tm A

D m X tm X t

∀ ⊂ ≠ =

= + −
 (6) 

Once all sources have been adapted by their 
discounting factor, they are fused by an 
intersection. 

3.2     What meaning has a reliability? 

There is a clear relation between the data 
supplied by a source, and its reliability. 
However the link is complex, and usually 
classification problems are used to estimate the 
reliability indices. In the previous papers the 
reliability of a source is assumed constant. Once 
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it is estimated, it is used without any further 
adjustments.  
 
The approach proposed in this paper is based on 
the assumption that sensors can become 
defective a posteriori past the learning step. So 
conflicts between the sources are dynamically 
exploited in order to continuously adapt the 
reliabilities. We assume that the reliability of a 
source is time-varying. Then, by using conflicts 
between the sources, defective sources can be 
detected. To do so, the reliability indices used in 
this paper are assumed to involve two different 
parts: the classical reliability representing the 
quality of a source, called the static reliability 

St , and a new reliability Dt  coming from the 
conflicts a source has with the other sources. 
Reliabilities Dt  are computed each time a fusion 
is carried out.  
 
Finally both reliabilities are combined into a 
single one ( , )D Sr f t t= , to be used as a 
discounting factor, for the true fusion. In this 
way, we can propose an algorithm that detects 
defective sources: those having a high static 
reliability, and at the same time severely 
conflicting with other sources. 
 

In order to avoid a full conflict between the 
discounted sources to fuse, the following 
constraints have to be enforced: f  is increasing 
from both arguments, (1,1) 1f = , (0,0) 0f = , 

0 ( ,0) 0D Dt f t> ⇒ >  and (0, ) 1Sf t < . 

 

In [3, 7, 14], about classifications problems, 
training sets are used and discounting factors are 
optimized to minimize an error-based criteria 
according to the result of the fusion. This 
approach can be interpreted as using dynamic 
reliabilities. But static ones are avoided. In [18] 
another approach is used by fusing meta 
informations about the sources before fusing 
them. In [15], which deals with fault isolation, 
conflicts are solved by using static reliabilities. 
However such constant discounting factors are 
chosen without any justifications. In [8] these 
two definitions are introduced, as well as their 
combination to obtain a discounting factor. But 
in that paper we feel that dynamic reliabilities 
are not fully used. In particular if a source is 
supposed very reliable and has a high static 
reliability, but if it contradicts the other sources, 

then it is possible that it has broken down. Such 
case is not handled in [8]. With the assumption 
that the only cause of conflict between reliable 
sources is a failure, we will be able to detect 
such failures and to improve the fusion step. 

3.3      Presentation of the algorithm 

 
The first step is to assess dynamic reliabilities. 
They will be based on similarities. 

Dynamic reliabilities ,i Dt   

They are computed for each source i . ,i Dt  is 

given by: 

 
,

1,
,

,
1,

n

j S ij
j j i

i D n

j S
j j i

t r

t
t

= ≠

= ≠

=
∑

∑
 (7) 

For example a low static reliability source can 
have conflicts with other sources, but it will not 
lower too much their dynamic reliability. Of 
course other relations can be used. 

Reliabilities ir  for each source i . 

We propose a linear sum, depending on 
( )0 0,1l ∈ . Here 0 0.5l = . It can be optimized, but 

this is beyond the scope of this paper.  

 0 , 0 ,(1 )i i D i Sr l t l t= + −  (8) 

 Similarity between the discounted sources 

This step is used to detect defective sources. The 
similarity is: 

 [ ] [ ]( )1 21 1 2min ( ), ( )t t
x X

A BetP D m x BetP D m x
∈

   =    ∑  

  (9) 
Of course if more than two sources are fused, 
the min must be computed with all sources. We 
can remark that: 

 1

( ) ( )
1 min j j j j

j j
x X A X

A X
A x

m A t m X t
A t

A X∈ ⊂
≠
⊃

  
   −
  = + +
  
  
  

∑ ∑

 
  (10) 
Adaptation Step 

Discounting factors are given by:  

 ( )0 , 0 ,(1 )i i i D i St r l t l tλ λ= = + −  (11) 
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with λ ranges from 1 to 0. In case of conflict, 
and thus in case of low 1A , λ is reduced to 0. 
This will increase 1A , since all sources will tend 
to the ignorance. It is obvious that the 
corresponding index, noted Aλ , is given by: 

 ( )11 1A Aλ λ= + −  (12) 

When Aλ  has to reach a  minimal level of 
agreement LoA , the value of λ  is given by: 

 
1

1
min 1,

1

LoA

A
λ

 −=  − 
 (13) 

Note that such an approach can be designed with 
the similarity based on ( )1 C m−  [15] but the 

expression for λ  is, for n  sources: 

 
( )

1
min 1,n

LoA

C m
λ

 −=  
 
 

 (14) 

Detection of defective sources  

We call here defective those sources having a 
low discounting factor. A signal Def  is created 
for each source. If ( ) 0Def i =  the ith source is 
said defective, if ( ) 1Def i =  it is said working. 
With it  given by (11), we propose the next 
relation to assessDef : 

 
0

( )
1

iif t LoW
Def i

otherwise

<
= 


 (15) 

with LoW  a scalar to choose. The relation 
between LoA  and LoW  is studied in section 5, 
as well as an optimization step. Indeed it is clear 
that the detection is sensitive to these two 
parameters. For example with (15), if a 
reliability is decreased, the corresponding source 
is likely to be identified as defective with high 
values of LoW . 

Static reliabilities are unavailable 

In this case, we take 0 1l = . By assuming 
constant ,i St , we get: 

 ,
1,

1

1

n

i D ij
j j i

t r
n = ≠

=
− ∑  ,i i Dt tλ=  (16) 

Only (15) can be used. Of course, such 
discounting factors can be used as static 
reliabilities for future fusions. 

4        Comparison with other rules 

4.1      Other rules of fusion 

Whatever the rules are, the problem is to 
reallocate the mass given to ∅ . The operator 
Yag of Yager proposes to shift this mass to X : 

 
1 2

1 2

( , )( )

( ) ( )
i j

i j
x A B

Yag m m x

m A m B
= ∩ ≠∅

=

∑  (17) 

 
1 2 1 2

1 2

( , )( ) ( ) ( )

( ) ( )
i j

i j
A B

Yag m m X m X m X

m A m B
∩ =∅

=

+ ∑  

The operator Dub  of Dubois and Prade 
proposes to give this mass to the union of 
elements which, by their intersection, give this 
empty set: 

 

1 2 1 2

1 2

( , )( ) ( ) ( )

( ) ( )

i j

i j

i j

i j
x A B

i j
x A B

A B

Dub m m x m A m B

m A m B

= ∩ ≠∅

= ∪
∅= ∩

=

+

∑

∑  (18) 

The consensus operator [10] equally considers 
the sources, with the exception that a relative 
weight γ  is introduced in the fusion when 
sources are conflicting, according to a particular 
definition called “dogmatism”. But this relative 
weight cannot be used when the data are not 
absolutely “dogmatic”. We present only the 
main relations. For any basic belief mass m  we 
define three functions: 
 ( ) ( )

y x

b x m y
⊆

=∑ , ( ) ( )
y x

d x m y
∩ =∅

= ∑ ,  

 
,

( ) ( )
y x y x

u x m y
∩ ≠∅ ⊄

= ∑  (19) 

We do not have ( ) 1
x X

b x
∈

=∑ . We only have 

, ( ) ( ) ( ) 1x X b x d x u x∀ ∈ + + = .  

1 2 1 2( ) ( ) ( ) ( ) ( )k x u x u x u x u x= + −  is called the 
dogmatism between 1m  and 2m . k  depends on 
x , because the consensus operator is different 
for all x  in X . So if X  has p  elements, we 
have to compute 3p  functions, and perform 3p  
fusions. Indeed the fusion rule Con  is defined 
by: 
If ( ) 0k x ≠ : 

 ( )
1 2

1 2 2 1( , )
( ) ( ) ( ) ( ) ( ) / ( )x xCon b b

b x b x u x b x u x k x= +  

 ( )
1 2

1 2 2 1( , )
( ) ( ) ( ) ( ) ( ) / ( )x xCon b b

d x d x u x d x u x k x= +  

 ( )
1 2

2 1( , )
( ) ( ) ( ) / ( )x xCon b b

u x u x u x k x=  (20) 
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If ( ) 0k x = , a relative weight ( )xγ  is introduced. 
It may vary according to the elements x . Then 
the Con  operator is defined by: 
 ( ) ( )

1 2
1 2( , )

( ) ( ) ( ) ( ) / ( ) 1x xCon b b
b x b x x b x xγ γ= + +  

 ( ) ( )
1 2

1 2( , )
( ) ( ) ( ) ( ) / ( ) 1x xCon b b

d x d x x d x xγ γ= + +  

 
1 2( , )

( ) 0x xCon b b
u x =  (21) 

In [9] a simple way to obtain 1 2( , )Con m m  is not 
presented  
 
Finally we will compare our result with the 
approach of Lefevre et al, [9, 11, 12]. * ( )m ∅  is 
cut in several pieces that are given to all the 
subsets of the reference set X . The process is 
quite complex, but the authors show that their 
fusion rule is a special case of the discounting 
approach, with a special choice of the 
discounting factors it . So a training step is 
proposed to learn the it . 
 
It is obvious that if we have a database, static 
reliabilities can be directly assessed, and theses 
reliabilities will have a physical meaning, as in 
[14, 15]. This is why we claim that the approach 
of Lefevre et al could be a way to learn the static 
reliabilities. 
 
So to summarize, this approach is used like the 
discounting approach, with a special choice of 
the discounting factors it . 
 

4.2 The comparison 

The reference set is { }, ,X A B C= . The two 

sources are: 
 { }( ) { }( )1 1,m A a m B b= =   

 { }( ) { }( )2 2,m C a m B b= =   

with 1a b+ =  
Since there are only two sources and no static 
reliability, discounting factors will be equal for 
both sources: t b= . The two sources, after the 
discounting step, become: 
 [ ] { }( ) [ ] { }( )1 1D m A at D m B bt= =  

 [ ]( )1 1D m X t= −  

 [ ] { }( ) [ ] { }( )2 2D m B bt D m C at= =  

 [ ]( )2 1D m X t= −  (22) 

The intersection between the discounted sources 
is given by table 1. 
 

Table 1. Intersection between the two 
discounted sources. ([ ]2D m  in columns) 

 , 1X t−  ,C at  ,B bt  
, 1X t−  2, (1 )X t−  , (1 )C at t−  , (1 )B bt t−  

,B bt  , (1 )B bt t−  2, abt∅  2 2,B b t  
,A at  , (1 )A at t−  2 2, a t∅  2, abt∅  

 
(9) gives ( )2

1 1A a a= + −  so when 0.75LoA ≤  no 

adaptation with (11)-(13) is required.  
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Figure 1. Fusion with our approach, [ ]0,1a ∈ . 

From left to right: ( )m X , ( )m A , * ( )m ∅ , 
( )BetP A . 0.9LoA =  for ‘-‘, 0.5LoA =  for ‘- -‘. 

 
When a  tends to 1, we tend to the absolute 
ignorance, with ( ) 1m X = . Clearly masses are 
continuous functions of the varying parameter 
a . When 1a = , 0t = , and we are in a total 
ignorance. For 0.9LoA = , ( ) 1m X =  is bigger and 

* ( )m ∅  before normalization is lower than for 
0.5LoA = . 

 
This result can be compared with other rules. 
With the approach of Yager, masses are: 
 2( ) 1m X b= − , 2( )m B b=  
With the approach of Dubois, masses are: 
 2( )m B b= , ( , ) ( , )m B C m B A ab= = , 

2( , )m A C a=   
For the consensus operator functions , ,b d u  
have to be defined for the three elements and the 
two sources: 
 1( )b A a= , 1( ) 1d A a= −  
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 1( ) 1b B a= − , 1( )d B a=  
 1( ) 0b C = , 1( ) 1d C =  
Replacing A by C gives the functions for 2m . 
Then the 2 sources can be fused. Here we are in 
what is called in [15] an absolute dogmatism for 
the 2 sources, since ( ) 0iu x = , 1, 2i = , x X∀ ∈ . 
Therefore the relative weight ( )xγ  of the 
sources is introduced. Since sources 1m  and 2m  
are considered equally, 1γ =  and constant. The 
final result is: 
 ( ) 1 ( )b B a m B= − = , ( )d B a=  
 ( ) / 2 ( )b A a m A= = , ( ) (2 ) / 2d A a= −  
with the same results for C. Here the basic belief 
mass m  can be introduced since ( ) 1

x X

b x
∈

=∑ , but 

usually this is not the case. 
 
For the operator of Lefevre, it is assumed that 

0.5t = , the mean value of our own t . 
 
The next figure compares our approach 
( 0.5LoA = ) with the four others.  
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Figure 2. From the top to the bottom: ( )BetP B  
and ( )BetP A , for five fusion rules: ‘-‘ our 
approach, ‘- -‘ Lefevre’s, ‘*’ consensus 
operator, ‘•’ Yager’s, ‘+’ Dubois’. 
 
If a decision about the correct solution has to be 
taken, differences are: 
� for the approach of Yager, B  is always the 

solution, except when 1a =  when we are in 
a state of full ignorance, with , ,A B C  
sharing the same 1/ 3BetP = . 

� for the approach of Dubois, B  is the 
solution when 0.68a ≤ , and then we hesitate 
between A  and C , 

� we get the same results with the consensus 
operator (there is a difference on a  for the 
third decimal), 

� we get the same results with the method of 
Lefevre, based on an static reliability 

0.5t = , but the transition occurs for 
0.71a = , 

� we get the same result with our method, 
except than when 1a =  we are in a full 
ignorance. In this case , ,A B C  share the 
same 1/ 3BetP = .  

 
This figure hides that with the approach of 
Yager, Lefevre and our’s, ( )m X  has a high level 
when a  tends to 1, reflecting a high level of 
ignorance. The consensus operator and the one 
of Dubois are also different. 
 
We lack of place to discuss the detection step, 
but if it is used, the two sources may be declared 
as defective depending on a , LoA  and LoW . 
This issue is tackled in the next section. 

5        Example with defective sensors  

5.1 Problem 

Three sources are fused. They have explicit 
time-varying static reliabilities. The frame of 
discernment is { }1,..., nX x x=  with 100n = . The 

variable varies randomly between two measures. 
We assume that the ix  are ordered.  
 
Sensors are prone to breakdowns, and by means 
of our algorithm, we will study 6 probabilities: 
� Status_OK, corresponding to a standard 

report (no alarm and no defective sensor), 
� False_Alarm, corresponding to alarms while 

the three sensors are running correctly,  
� Detection_OK, when they are alarms and 

one (or more) sensor is defective, 
� Robust_Fusion, when there is no alarm, one 

and only one sensor is defective, and errors 
are acceptable,  

� Non_Detection, when there is no alarm, one 
(or more) sensor is defective, and errors are 
unacceptable, 

� Incorrect_Robust_Fusion, when there is no 
alarm, there is only one working sensor, and 
errors are acceptable.  

 
The problem is to minimize P(Error) = 
P(False_Alarm) + P(Non_Detection) + 
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P(Incorrect_Robust_Fusion) while maximizing 
the other probabilities.  

5.2 Data  

Sensor’s reports are modeled by simple support 
functions, whatever their status (working or 
not). The report of the source iS  is: 
Working state: ( ) , ( ) 1i i i im A a m X a= = −  
Defective state: ( ) , ( ) 1i i i im B a m X a= = −  
With A  and B  sets of cardinal ic  (at most) 
centered around an 0x . For B  0x  is chosen 
with a uniform probability on X .  
 
Let be the correct state of the universex . 0x  
for A  is shifted from x  with an offset equals at 
most to id . This offset is based on a uniform law 

between[ ],i id d− . Figure 3 shows an example 

where the set A  is truncated and does have a 
cardinal lower than ic  because the computed set 
with a cardinal ic  does not belong to X . 

X

xx1 xn
x0

ci

di

A i

Figure 3. Report from a source. 
 
We take 1 2 39, 9, 11c c c= = = , 1 24, 5,d d= =  

3 6d = . Since the offset 3d  is larger than 

( )3 1 / 2c − , the focal element of sensor 3 (and 2) 

may have an empty intersection withx . This 
justifies the interest of a fusion between the 
sensors. We also have 1 2 30.7, 0.7, 0.9a a a= = = . 
The probability a sensor is working on the 
interval [ ]0,T  is defined as the reliability in the 

theory of reliability [19]. With t  the elapsed 
time since the beginning, it is given for the three 
sensors S1, S2 and S3 by exponential laws with 
constant parameters: 
 ,

iT
i S it r e µ−= =  (23) 

with 6
1 25.10µ −= , 6

2 10µ −= , 7
3 8.10µ −= , 

meaning that Mean Time To Failure are 
respectively equal to 11h, 28h and 35h (take 
1/ iµ ). 
When a fusion is carried out, an estimated state 
x̂  is computed as the expected utility based on 

the BetP  function, with ix i= . The level of 
acceptable errors is set to 10%. 
 

5.3 Results 

In this example, we add a discrete filter to 
smooth results about the detection. The input of 
the filter will be iDef  and its output 'iDef . The 
i th source is said defective if ' 0.5iDef < . 
 
We choose a first order filter, of equation: 
 ' ( ) '( 1) (1 ) ( )i i iDef k Def k Def kα α= − + −  (24) 
with k  an integer, 2t∆ =  minutes, and with 
initial state '(0) 1iDef = . α  is a parameter to 
choose. In this example 0.9α = , meaning that a 
fully working source is stated defective after 6 
successive failure. 
 

0
0.2

0.4
0.6

0.8
1

0

0.5

1
-0.5

0

0.5

1

LoaLow  
Figure 8. P(Status_Ok)+ P(DetectionOk)+ 
P(Robust_Fusion)-P(False_Alarm)- 
P(Non_Detection)- P(Incorrect_Robust_Fusion). 
 
The optimization of LoA  and LoW  was based 
on a search with 10 values for LoA  and 9 for 
LoW . Another optimization step based on 
numerical algorithm could improve the results. 
The best combination is given by 0.25LoW =  
and 0.8LoA =  with P(False_Alarm)+ 
P(Non_Detection)+ P(Incorrect_Robust_Fusion) 
= 1%.  
 

6     Conclusion 

In this paper a method to compute dynamically 
discounting factors from past information and 
conflicts has been proposed, as well as a 
detection of defective sources, based on the 
analysis of the adapted discounting factors. Two 
examples show the interest of such an approach. 
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