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Abstract 

This paper presents a sensor failure 
detection method based on the fusion of 
predicted and observed sensor data. The 
originality of our approach is the use of 
a Markov Chain to model the normal 
behavior of a sensor within the TBM 
framework. When fusion between 
predicted and observed data is done, 
three experts analyze conflict resulting 
from the fusion process and are able to 
detect an abnormal behavior of the 
sensor by looking for high increase of 
conflict. The testing results show that 
this method is efficient to detect sensor 
failure with a TBM approach. 
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1  Introduction 

In the sensors based applications framework, 
having a total confidence towards the sensor is a 
critical issue. A human or automatic system 
decision-making process, in accordance with the 
acquire sensors data, can generate important 
consequences. In this paper, we present a 
method to detect the sensors failures (the data 
sources, in a more general way) in order to not 
take into account data with errors in the final 
decision-making process and by pondering its 
influence at the final decision-making level.  

In literature, one can distinguish three main 
methods for the detection of sensor dysfunction: 

• The sensor is perfectly known and the 
provided values are limited [10], 

• Several sensors produce redundant data on 
the same variable [12], 

• A prediction-checking phase is used which 
enables detection of abnormal behaviour of 
one sensor only. The Kalman filter or 

particle filtering [11] is used to determine 
abnormal behaviour. 

One can see that no work addresses the problem 
with a symbolic approach. This is one of our 
main constraints, due to our software 
architecture based on an ontology that handles a 
symbolic representation [4] to infer. Our work is 
based on the Transferable Belief Model 
framework (TBM) initiated by Philippe Smets 
[5]. Thus, a data source behaviour is represented 
with this theory represent with a set of masses 
on a discernment frame.   

This article is organized as follows. First, we 
present how to model the data source behaviour 
with a stochastic process. In the second part, we 
detail our model-based method to detect a sensor 
failure thanks to the use of predicted values of 
the sensor. This method compares the actual 
values with the predicted ones to detect faults. 

2  Data source modelling using a Markov 
Chain Model 

The question is: How to detect an anomaly? 
First, it is necessary to know the normal data 
source behaviour in order to detect its abnormal 
behaviour. 

We describe a data source as a system with a 
behaviour evolution through time series. Based 
on ontology [4], our architecture needs symbolic 
data to provide the best service. A data source 
has various known symbolic states that progress 
process through a sequence of states S with 
equal time intervals. Based on this presentation, 
we can define that a data source is a discrete-
time stochastic process [2][7] and more 
particularly a Markov Chain Model (MCM) [1] 
which is a special type of discrete-time 
stochastic process. Among probabilistic 
processes, the MCM, employed in this paper, 
provides a powerful tool for analysing the 
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system evolution through time series, and it has 
been applied in many fields of research.  

MCM describes the evolution of a process 
through a sequence of states X with equal time 
intervals. A  MCM moves  from  one  state  to  
the  next  controlled  by  the transition  matrix T. 
The whole possible values are called the space 
of states where Xn is the state of the process at 
time n. If the conditional probability distribution 
of Xn+1 on the last states is related to Xn alone, 
then: 

 

where X is an unspecified state of the process. 
Given the present state of the system Xn, matrix 
T provides the probability to go in one step from 
state Xn to state Xn+1,  that is : Xn+1= T×Xn. 
This property indicates that it is possible to 
predict the future evolution of a system by 
determining the transition matrix T. The 
applicability of MCM to represent and predict 
has been discussed by previous paper [9]. Many 
work use Markov prediction. [13] uses Markov 
chain model to make link predictions that assist 
new users to navigate the Web site. Web users’ 
navigation is modeling using Markov chains and 
prediction help users to find information more 
efficiently and accurately than simply following 
hyperlinks. In voice packet transmitting domain, 
Markov chain prediction is used for 
compensating when speech frames are missing 
[14]. It enables listener to hear something even 
when voice packets are lost, deleted, or 
excessively delayed in the network. 

In this work, the normal behaviour of a data 
source will be related to an actual state and a 
previous state. Indeed, if the data source 
correctly follows the evolution of the MCM, i.e. 
a transition probability exists for the passage of 
a state to another, its behaviour will be defined 
as normal. However, when the data source goes 
through a state to another whereas the transition 
probability is null, then the behaviour is 
abnormal. Thanks to this property and to the 
predictivity concept of the data source 
behaviour, the dysfunction detection is possible. 

3  Sensor failure detection by fusion of 
predicted/observed data 

3.1  General method 

The implemented method is based on filtering 
methods that make a prediction from 

observations. Based on this philosophy, we 
defined a method for sensor failure detection 
composed of four principal parts:  

• Observation 

• Prediction 

• Fusion  

• Checking 

The observation part is the set of masses at the t 
moment provided by the data source to 
diagnose.  

The prediction part provides an estimation of the 
state of the data source at the t+1 moment. 

The fusion part merges the observed and the 
predicted values. 

The checking part checks the result from the 
fusion part and detects the disagreement 
between the observed and the predicted values. 
This checking part is carried out on the conflict 
mfusion (Ø) resulting from the fusion part. 

 

The general diagram is the following one:  

 

 

 

 

 

Figure 1 :  General diagram for sensor failure 
detection 

The observation provides a set of masses 
mobservation on the whole of hypothesis and 
disjunctions of hypothesis of the discernment 
frame. Thus, it is possible to build a predicted 
set of masses mprediction calculated with an 
evolution model. In our case, this evolution 
model is a MCM [8] [3]. From this MCM, it is 
possible to carry out a Markovian prediction.  

3.2  The Markovian prediction 

In the Markovian prediction framework [6], a 
probabilistic vector of observation Xobservation is in 
input of the prediction part, corresponding to the 
current state of the data source. The estimation 
of the Markovian vector of prediction Xprediction 
based on the transition matrix T, is obtained by: 

Xprediction = Xobservation * T  (1) 

mobservation (t) 

mobservation (t-1) 

mprediction (t) 

mfusion (t) 

Observation 

Prediction 

Fusion Checking 
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For example, the matrix T is defined modelling 
3 states. From the X0 state at t, the process can 
remain in X0 or go to X1 at the next moment 
t+1. In the same manner, from the X2 state at t, 
the process can remain in X2 or go to X1 at the 
next moment. When the process is in the state 
X1 at t, the process can remain in X1, or go in 
X0 or X2 at the next moment. Thus, the 
previous description is represented into a 
transition matrix T and its corresponding 
directed graph : 

 

T= 

 X0 X1 X2 

X0 1/2 1/2 0 

X1 1/3 1/3 1/3 

X2 0 1/2 1/2  

 

Figure 2 :  Transition matrix T and its 
corresponding directed graph 

When a transition from a state to another is 
possible, the probability of transition is strictly 
positive, if not when a transition is impossible, 
the probability of transition is null. 

With this representation, an observation vector 
XObservation = [1 0 0], i.e. the process is in the X0 
state at the moment t=0, provides the prediction 
vector XPrediction = XObservation * T = [0.5 0.5 0]. 
Hence, this prediction shows that when the 
process is in the X0 state with a high 
probability, it will be in the X0 or X1 state at the 
next moment with the same probability. 

As we can see with this example, the Markovian 
prediction needs a set of probabilities in input 
and provides a set of probabilities in output, i.e. 
a predicted set of probabilities. However in the 
input of our system, the data source provides an 
observed set of masses.  

It means that it is necessary to convert this 
observed set of masses in order to allow the 
estimation of the Markovian prediction. The 
pignistic probability calculus proposed by 
Smets[5] is a solution to this problem. It is 
possible to calculate the Markovian prediction 
on the set of pignistic probabilities. The 
predicted set of probabilities must be converted 
too into a predicted set of masses in order to be 

able to carry out a fusion between predicted and 
observed set of masses.  

 

Figure 3 : Conversion sets to enable Markovian 
prediction 

As the set of probabilities is complete (∑ 
PPrediction (Xi) = 1), it is then possible to directly 
convert this set of probabilities into a set of 
masses. The probabilities on the singleton 
hypothesis are directly placed on the sets of 
masses on the corresponding singleton 
hypothesis : 

mprediction (Xi) = Pprediction (Xi)  (2) 

3.3  Observed and predicted set of masses 
fusion 

To carry out fusion between the predicted set of 
masses mprediction and the observed set of masses  
mobservation, we use the Smets operator ∩ to 
isolate the conflict resulting from the fusion 
between mprediction and mobservation : 

mfusion = mprediction ∩ mobservation    (3) 

and 

∑
∅=∩

=∅
BA

nobservatiopredictionfusion BmAmm )().()(   (4) 

The set of masses mfusion is the result of the 
fusion between the predicted and the observed 
set of masses at a moment t. mobservation is the set 
of masses coming from the observation and 
mprediction is the set of masses coming from the 
prediction based on the MCM. This fusion is 
based on the Smets operator ∩ that enable to 
isolate the conflict between the predicted and the 
observed set of masses, i.e. the difference 
between the predicted and the observed state. 

To detect a failure, our method is based on the 
conflict analysis between the predicted and 
observed set of masses. To detect a failure, the 
conflict mfusion(Ø) has to be analyse. If conflict 
appears, it can be due to two hypotheses. The 
first one is a false prediction (due to a bad 
MCM) and the second one is conflict due to the 
sensor failure. We assume the second hypothesis 
and a right MCM of the sensor. To illustrate this 
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theory, one sensor with the frame of 
discernment (FOD) Θ = {X0, X1,X2} and 
following the behaviour of Figure 2, provides : 

At t=0 :  

Observed set of masses t=0 Predicted set of masses t=1 

mObervation (X0) = 0.7 mPrédiction(X0) = 0.4745 

mObervation (X1) = 0 mPrédiction(X1) = 0.4745 

mObervation (X2) = 0 mPrédiction(X2) = 0.0495 

mObervation (X0 υ X1) = 0.3 mPrédiction(X0 υ X1) = 0 

mObervation (X0 υ X2) = 0 mPrédiction(X0 υ X2) = 0 

mObervation (X1 υ X2) = 0 mPrédiction(X1 υ X2) = 0 

mObervation (X0 υ X1 υ X2) = 0 mPrédiction(X0 υ X1 υ X2) = 0 

The prediction process begins at t=1. At t=0, the 
predicted set of masses is equal to the observed 
set of masses. 

At t=1 : 

Observed set of masses t=1 Merged set of masses t=1 

( mObervation(Xi) (t=1)  ∩ 
mPrédiction(Xi) (t=1) ) 

mObervation (X0) = 0.9 mfusion (X0) = 0.4745 

mObervation (X1) = 0 mfusion (X1) = 0.04745 

mObervation (X2) = 0 mfusion (X2) = 0 

mObervation (X0 υ X1) = 0.1 mfusion (X0 υ X1) = 0 

mObervation (X0 υ X2) = 0 mfusion (X0 υ X2) = 0 

mObervation (X1 υ X2) = 0 mfusion (X1 υ X2) = 0 

mObervation (X0 υ X1 υ X2) = 0 mfusion (X0 υ X1 υ X2) = 0 

 mfusion(Ø) = 0.47655 

 

Predicted set of masses t=2 

mPrédiction(X0) = 0.492 

mPrédiction(X1) = 0.492 

mPrédiction(X2) = 0.02 

mPrédiction(X0 υ X1) = 0 

mPrédiction(X0 υ X2) = 0 

mPrédiction(X1 υ X2) = 0 

mPrédiction(X0 υ X1 υ X2) = 0 

At t=2 : 

Observed set of masses t=2 Merged set of masses t=2 

mObervation (X0) = 0 mfusion (X0) = 0 

mObervation (X1) = 0 mfusion (X1) = 0.123 

mObervation (X2) = 0.75 mfusion (X2) = 0.065 

mObervation (X0 υ X1) = 0 mfusion (X0 υ X1) = 0 

mObervation (X0 υ X2) = 0 mfusion (X0 υ X2) = 0 

mObervation (X1 υ X2) = 0.25 mfusion (X1 υ X2) = 0 

mObervation (X0 υ X1 υ X2) = 0 mfusion (X0 υ X1 υ X2) = 0 

 mfusion(Ø) = 0.861 

This example presents three sensor data 
acquisition. At t=0, the predicted set of masses 
is unknown, that is why the fusion of predicted 
and observed set of masses is not achieved. 
However, it is possible to predict the set of 
masses for t=1. We can observe that this 
predicted set of masses follows the right 
behaviour of the sensor, i.e. when the sensor is 
in the state X0, it can remain in X0 or go to X1 
at t+1 (defined by an equi-masses on 
mPrediction(X0) and mPrediction(X1)).  

At t=1, it is possible to merge the observed and 
predicted set of masses. We can observe that the 
conflict mfusion(Ø) = 0.47655 is relatively high, 
due to the prediction that can not choose 
between X0 or X1.  

At t=2, the conflict between the predicted and 
observed set of masses is very high (mfusion(Ø) = 
0.861), due to an observation that is trending to 
X2 and the prediction that is trending to X0 or 
X1. This conflict is justified by the Markovian 
model of the sensor. At t=1, the sensor trends to 
be in the state X0 and at t=2, it trends to be in 
X2, which is an impossible behaviour of the 
sensor (transition probability between X0 and 
X2 is equal to 0; P( X2|X0) = 0 ) 

3.4  Failure detection 

Here the problem is to detect an abnormal 
behaviour of the sensor by analysing the conflict 
between the observed and predicted set of 
masses. As we see in the previous example, 
when the sensor follows an abnormal behaviour, 
the conflict increases quickly. However, even if 
the sensor follows its normal behaviour, conflict 
is appearing too. This redundant conflict is due 
to the imprecise Markovian prediction that can 
not choose between probable states but just 
provides a tendency. This redundant conflict is 
continuous during the functioning of the sensor 
and is not significant to express an abnormal 
behaviour of the sensor. 

On the contrary, with multiple examples, we 
observed a quick increase of the conflict 
followed of a quick decrease when an abnormal 
behaviour occurs. To detect a failure, we define 
three experts based on the temporal conflict 
signal : 
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1. Expert 1 discusses about the direction between 
two consecutive points. 

2. Expert 2 discusses about the difference value 
between two consecutive points. 

3. Expert 3 discusses about the variation value 
between N consecutive points. 

The main goal of those three experts is to merge 
them to detect a high increase of the conflict for 
a short duration that characterise an abnormal 
behaviour.  

4  Experimental results 

We implemented our method with simulated 
data. This simulation uses a sensor in input of 
the system and provides a set of masses 
mobservation on the discernment frame Θ :  Θ = 
{X0, X1, X2}. To describe the behaviour of the 
sensor, we use the Markov Chain Model of 
Figure 2. The Figure 4 presents the experimental 
data set mobservation (m(X0)(t), m(X1)(t), m(X2)(t), 

m(X0∪X1)(t), m(X0∪X2)(t), m(X1∪X2)(t). 

m(X0∪X1∪X2)(t) doesn’t appears because it 
never occurs ). 

 

Figure 4 : Temporal evolution of the observed 
set of masses mobservation 

This temporal evolution is divided into seven 
phases:  

From t=0 to 7, the sensor is in the state X0, 

From t=8 to 14, the sensor is in the state X1, 

From t=15 to 21, the sensor is in the state X2, 

From t=22 to 28, the sensor is in the state X1, 

From t=29 to 35, the sensor is in the state X0, 

From t=36 to 47, the sensor is in the state X2, 

From t=48 to 54, the sensor is in the state X0. 

We can observe 2 abnormal phases. At t=36, the 
sensor goes from A0 to A2, which is an 

impossible transition. At t=48, the sensor goes 
from A2 to A0, which is impossible too. 

The Figure 5 presents the predictions based on 
the observed set of masses seen previously. 

Figure 5 : Temporal evolution of the observed 
and predicted set of masses 

This figure presents the observed set of masses 
(thin lines) seen on Figure 4 and the predicted 
set of masses (thick lines) based on the sensor 
MCM from Figure 2.  

On the left, the masses on singleton hypothesis 
are presented and on the right, the masses on the 
disjunction of hypothesis. A particular case is at 
t=0. In this case, we arbitrary choose to begins 
the prediction process at t=1.However, at t=0, 
the predicted set of masses is equal to the 
observed set of masses. 

In a normal behaviour, the predicted set of 
masses follows the observed set of masses 
tendency. However, in case of abnormal 
behaviour, at t=36, the predicted and observed 
set of masses are in conflict:  

 

   

 

 

 

 

 

Figure 6 : Set of masses during an abnormal 
behaviour 

At t=35, the sensor is in the state X0. The 
Markovian prediction provides a mass m(X0) 
and m(X1) for the next moment but a null mass 
for m(X2). This is the normal behaviour defined 
by the sensor MCM. 

t = 36 

m (X2) 

t = 36 

m (X0) 
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At t=36, the sensor goes from X0 to X2, which 
is an impossible transition. When the fusion 
between the predicted and observed set of 
masses at t=36 is done, we observe a high 
conflict: 

 

 

 

 

 

 

Figure 7 : Conflict due to an abnormal 
behaviour 

The corresponding set of masses at t=36 are : 

mObervation(X0)=0 mPrediction(X0)=0.4575 mfusion(X0)=0 

mObervation(X1)=0 mPrediction(X1)=0.4575 mfusion(X1)=0.22875 

mObervation(X2)=0.5 mPrediction(X2)=0.0825 mfusion(X2)=0.12375 

mObervation(X0υX1)=0 mPrediction(X0υX1)=0 mfusion(X0υX1)=0 

mObervation(X0υX2)=0 mPrediction(X0υX2)=0 mfusion(X0υX2)=0 

mObervation(X1υX2)=0.
5 

mPrediction(X1υX2)=0 mfusion(X1υX2)=0 

mObervation(X0υX1υX
2)=0 

mPrediction(X0υX1υX2
)=0 

mfusion(X0υX1υX2)=
0 

  mfusion(Ø)=0.68625 

The Figure 8 presents the complete fusion 
signal. On this signal, we observe the 
appearance of peaks of conflict corresponding to 
impossible jumps of state. 

 

 

 

 

 

Figure 8 : Conflict signal 

To isolate the conflict peaks, indicating a sensor 
failure, we use three experts that study the 
conflict resulting from fusion.  

The Frame Of Discernment (FOD) of those 
three expert is the same one and is composed of 
the two hypothesis ‘YES’ and ‘NO’, with ‘YES’ 
meaning ‘the behaviour of the sensor is normal’ 
and ‘NO’ meaning ‘the behaviour of the sensor 
is abnormal’. For each of those experts, a Basic 
Belief Assignment (BBA) is defined. 

The first BBA presented Figure 9 provides a set 
of masses mexpert1 about the direction between 
two consecutive points. This BBA is applied on 
the derivative of the conflict signal and is based 
on the difference between two consecutive 
points to determine the direction. This method 
enables to characterize an increase or a decrease 
of the conflict. 

Figure 9 : The first BBA concerning the 
direction between two consecutive points 

In this BBA, when the conflict is increasing, its 
corresponding derivative is negative, when the 
conflict is decreasing, its corresponding 
derivative is positive. The offset named 
‘Offset1’ enables to define the doubt when the 
direction is close to zero meaning that the 
conflict is constant. In this case, the conflict is 
not increasing and not decreasing. 

The second BBA presented Figure 10 provides a 
set of masses mexpert2 about the amplitude 
between two consecutive points. This BBA is 
applied on the conflict signal and is based on the 
difference between two consecutive points. This 
method enables to detect high peak of conflict.  

 

 

Figure 10 : The second BBA concerning the 
difference between two consecutive points 

In this BBA, when the amplitude of the conflict 
exceeds the threshold named ‘threshold2’, it 
means that it is a high conflict, when it is lower 
than this threshold, it means that there is a low 
conflict. ‘Offset2’ enables to define doubt zone 
about the amplitude of the conflict. 

The third BBA presented Figure 11 provides a 
set of masses mexpert3 about the variation value 
between N consecutive points. This BBA is 
applied on the conflict signal and is based on the 

t = 36 

mfusion(Ø) 

mfusion(Ø) 
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difference between N consecutive points. It 
enables to detect short conflict. 

Figure 11 : The third BBA concerning the 
duration of a peak 

In this BBA, when the variation between N 
points exceeds the threshold named 
‘threshold3’, it means that it is a peak of 
conflict, when it is lower than this threshold, it 
means that it is not a peak of conflict, just a little 
increase of it.  

The fusion of those three experts allows to 
isolate the impossible transition phases like from 
X0 to X2 or from X2 to X0, which are 
theoretically impossible with the chosen 
transition matrix T. 

The fusion of those three experts is done using 
the Smets operator and provides a set of masses 
mfailure = mexpert1 ∩ mexpert2 ∩ mexpert3 with mexpert12 = 

mexpert1 ∩ mexpert2 and mfailure = mexpert12 ∩ mexpert23. 

The conflict coming from the fusion of the three 
experts is analysing in that way: 

When conflict appears during fusion of expert 1 
and 2, it comes from: a negative high peak of 
conflict or a positive low peak. In those two 
cases, this conflict represents the hypothesis 
‘YES’. So we report the conflict value on 
mexpert12(YES). In the same way, when conflict 
appears during fusion of expert 12 and 3, it 
comes from: a small peak of conflict, a decrease 
or an increase of the conflict for a long duration. 
In those two cases, this conflict represents the 
hypothesis ‘YES’. So we report the conflict 
value on mexpert123(YES). 

The Figure 12 presents the temporal view of the 
three opinions coming from the experts, the 
fusion of those three experts and the final 
decision based on the pignistic decision process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 : Fusion conflict, fusion of three 
experts and pignistic decision signals 

To obtain those results, we define Offset1 = 
0.001, threshold2 = 0.10 Offset2= 0.01, 
threshold3 = 0.20 Offset3= 0.02 and N=2. This 
setting allows to efficiently detect the two sensor 
failure at t=36 and t=48. 

We tested our method with a second example. 
We used the same process with another MCM 
shown Figure 13. 

 

T= 

 X0 X1 X2 

X0 1/2 1/2 0 

X1 0 1/2 1/2 

X2 0 1/2 1/2  

 

Figure 13 :  Transition matrix T and its 
corresponding directed graph 

This MCM describes the following behaviour : 
from X0 at t, the process can remain in X0 or 
goes to X1 at t+1. From X1 at t, the process can 
remain in X1 or goes to X2 at t+1. When the 
process is in X2 at t, the process can remain in 
X2, or goes in X1 at the next moment. With this 
MCM, the impossible transitions are from X0 to 
X2, from X1 to X0 and from X2 to X0. Like the 
first example, we use the experimental data 
presented Figure 4. Following the MCM, we can 
note failures at t = 30, t = 36 and t=48. 

The obtained results are shown on Figure 14. 

 

 

 

 

mfusion(Ø) 

mExpert1 

mExpert2 

mExpert3 

mFailure 

Decision 
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Figure 14 : Fusion conflict, fusion of three 
experts and pignistic decision signals 

To obtain those results, we modify the previous 
settings and define Offset1 = 0.001, threshold2 
= 0.085, Offset2= 0.01, threshold3 = 0.15 
Offset3= 0.02 and N=2. This setting allows to 
efficiently detect the two sensor failures at t=30, 
t=36 and t=48.  

5  Conclusion 

In this paper, we present a method for sensor 
failure detection, modelled by a Markovian 
stochastic process, within the TBM framework 
by studying the conflict resulting from fusion 
between an observed set of masses and a 
predicted set of masses. With the conflict 
resulting from this fusion and by using three 
experts about the shape of the fusion conflict 
signal, we manage to determine the failure 
phases of the sensor. However, the expert 
settings are not easy to do. Actually, we are 
working on a new version of the predictor to 
obtain a more accurate state prediction to make 
easier the conflict analysis. 
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