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Abstract

To correct the information, repre-
sented by a belief function, pro-
vided by a source, different tools
can be used such as discounting,
de-discounting, extended discount-
ing. In this paper, the links between
these operations are explored. A
new interpretation of these schemes,
as well as a parameterized family
of transformations encompassing all
previous schemes is introduced and
justified. A postal application illus-
trates the benefits obtained by the
use of one of these new correction
mechanisms.

Keywords: Dempster-Shafer the-
ory, correction mechanisms of belief
functions, discounting.

1 Introduction

Introduced by Dempster and Shafer [11],
belief functions constitute one of the main
frameworks for reasoning with imperfect in-
formation.

When receiving a piece of information repre-
sented by a belief function, an agent can hold
some metaknowledge regarding the reliability
of the source which provides the information.
To correct the information according to this
metaknowledge, different tools can be used:

• the discounting operation, introduced by
Shafer in his seminal book [11], allows

one to weaken information.

• the de-discounting operation, introduced
by Denœux and Smets [2], allows one to
strengthen information.

• the extended discounting operation, intro-
duced by Zhu and Basir [16], allows one
to weaken, strengthen or contradict in-
formation.

In this paper, the links between these oper-
ations are explored. A new interpretation of
these schemes, as well as a parameterized fam-
ily of transformations encompassing all previ-
ous schemes is introduced and justified. This
family includes all possible transformations,
expressed by a belief function, regarding the
states in which the source can be when the
information is supplied. This paper extends
and reexpresses some results, limited to the
aspects of reinforcement and discounting, in-
troduced by the authors in [9].

Belief functions are used in different models,
for instance, models based on lower and up-
per probabilities, like Dempster’s model [1] or
Hints model [6], the random sets theory [5],
or the transferable belief model (TBM) de-
veloped by Smets [13, 15]. In the TBM, belief
functions are interpretated as weighted opin-
ions of an agent or a sensor. This model is
adopted in this paper.

This paper is organized as follows. Back-
ground material on belief functions is recalled
in Section 2. Correction mechanisms are pre-
sented in Section 3. A new interpretation of
these schemes as well as a parameterized fam-
ily of correction mechanisms is introduced and
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justified in Section 4. An application exam-
ple, which aims at fusing decisions associated
with confidence scores, is described in Section
5. Finally, Section 6 concludes this paper.

2 TBM: basic concepts

Let Ω � tω1, . . . , ωKu, called the frame of dis-
cernment, be a finite set of possible answers
to a given question Q. Information held by an
agent Ag regarding the answer to question Q,
given evidence EC, can be quantified by a ba-
sic belief assignment (bba) mΩ

AgrECs, defined
as a function from 2Ω to r0, 1s, and verifying:

A̧�Ω

mΩ
AgrECspAq � 1 . (1)

When there is no ambiguity, the full notation
mΩ

AgrECs will be simplified to mΩ
Ag, mΩ, or

even m.

The quantity mΩpAq represents the part of
the unit mass allocated to the hypothesis that
the answer to question Q is in the subset A of
Ω.

A subset A of Ω such that mpAq ¡ 0 is called
a focal element of m. A bba m with only one
focal element A is called a categorical belief
function and is denoted mA, then mApAq � 1.
Total ignorance is represented by the bba mΩ,
called the vacuous belief function. A bba m
such that mpHq � 0 is said to be normal.

Two bbas m1 and m2, induced by distinct and
reliable sources of information, can be com-
bined using the conjunctive rule of combina-
tion (CRC), also called unnormalized Demp-
ster’s rule of combination, defined for all A �
Ω by:

m1 X©m2pAq � ¸
BXC�A

m1pBqm2pCq . (2)

Marginalization and vacuous extension
on a product space A bba defined on a
product space Ω�Θ may be marginalized on
Ω, by transferring each mass mΩ�ΘpBq for
B � Ω�Θ to its projection on Ω:

mΩ�ΘÓΩpAq � ¸
B�Ω�Θ,
ProjpBÓΩq�A

mΩ�ΘpBq, (3)

for all A � Ω where ProjpB Ó Ωq denotes the
projection of B onto Ω.

It is usually not possible to retrieve the origi-
nal bba mΩ�Θ from its marginal mΩ�ΘÓΩ on
Ω. However, the least committed, or least in-
formative bba [12] such that its projection on
Ω is mΩ�ΘÓΩ may be computed. This defines
the vacuous extension of mΩ in the product
space Ω � Θ [12], noted mΩÒΩ�Θ, and given
by:

mΩÒΩ�ΘpBq � $&% mΩpAq if B � A�Θ,
A � Ω

0 otherwise.
(4)

Conditioning and ballooning extension
on a product space Conditional beliefs
represent knowledge which is valid provided
that an hypothesis is satisfied. Let m be a
bba and B � Ω an hypothesis; the conditional
belief function mrBs is given by:

mrBs � m X©mB . (5)

If mΩ�Θ is defined on the product space Ω�Θ,
and θ is a subset of Θ, the conditional bba
mΩrθs is defined by combining mΩ�Θ with
mΘÒΩ�Θ

θ , and marginalizing the result on Ω:

mΩrθs � �mΩ�Θ X©mΘÒΩ�Θ
θ

	ÓΩ
(6)

Assume now that mΩrθs represents the
agent’s beliefs on Ω conditionally on θ, which
means in a context where θ holds. There are
usually many bbas on Ω � Θ, whose condi-
tioning on θ yields mΩrθs. Among these, the
least committed one is defined for all A � Ω
by:

mΩrθsòΩ�ΘpA� θYΩ� θq � mΩrθspAq. (7)

This operation is referred to as the decondi-
tioning or ballooning extension [12] of mΩrθs
on Ω�Θ.

3 Correction mechanisms

3.1 Discounting

When receiving a piece of information, repre-
sented by a bba m, agent Ag can have some
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doubt regarding the reliability of the source
which has provided this bba. Such a meta-
knowledge can be taken into account by us-
ing the discounting operation introduced by
Shafer [11, page 252], and defined by:

αm � p1� αqm� α mΩ , (8)

where α P r0, 1s.
A discount rate α equal to 1, means that the
source is not reliable and the piece of infor-
mation it provides cannot be taken into ac-
count, so Ag’s knowledge remains vacuous:
mΩ

Ag � 1m � mΩ. On the contrary, a null
discount rate indicates that the source is fully
reliable and the piece of information it pro-
vides is entirely accepted: mΩ

Ag � 0m � m.
In practice however, agent Ag does not know
for sure whether the source is reliable or not,
but he has some degree of belief expressed by:"

mRAgptRuq � 1� α

mRAgpRq � α,
(9)

where R � tR,NRu, R standing for “the
source is reliable”, and NR standing for “the
source is not reliable”. This formalization
yields to the expression (8), as demonstrated
by Smets in [12].

3.2 De-Discounting

In this process, agent Ag receives a bba αm
from a source S, different from mΩ and dis-
counted with a discount rate α   1. If Ag
knows α, then it can recompute m by revers-
ing the discounting operation (8):

mAg � m � αm� α mΩ

1� α
. (10)

This procedure is called de-discounting by
Denœux and Smets in [2].

If the agent receives a bba m discounted
with an unknown discount rate α, agent Ag
can imagine all possible values in the ranger0,mpΩqs. Indeed, as shown in [2], mpΩq
is the largest value for α such that the de-
discounting operation (10) leads to a bba.
De-discounting m with this maximal value
is called maximal de-discounting. The result

is the totally reinforced belief function, noted
trm and defined as follows:

trmpAq � # mpAq
1�mpΩq �A � Ω,

0 otherwise.
(11)

The bba trm is obtained from m by redis-
tributing the mass mpΩq totally and uni-
formly on focal elements of m.

3.3 Extended Discounting Scheme

In [16], Zhu and Basir have proposed to
extend the discounting process, in order to
strengthen, discount or contradict belief func-
tions.

The extended discounting scheme is composed
of two transformations.

The first transformation, allowing one to
strengthen or weaken a source of information,
is introduced by retaining the discounting
equation (8), and allowing the discount rate
α to be in the range r�mpΩq{p1�mpΩqq, 1s.
• If α P r0, 1s, this transformation is the

discounting operation.

• If α P r�mpΩq{p1 � mpΩqq, 0s, this
transformation is equivalent to the de-
discounting equation (10) with the repa-
rameterization α � �α1

1�α1 with α1 Pr0,mpΩqs. Indeed:

αm � p1� �α1
1�α1 qm� �α1

1�α1mΩ� m�α1mΩ
1�α1 .

(12)

The second transformation, allowing one to
contradict a non-vacuous and normal belief
function m, is defined by the following equa-
tion:"

αmpAq � pα� 1qmpAq if A � Ω,
αmpΩq � pα� 1qmpΩq � 2� α otherwise,

(13)
where α P r1, 1 � 1

1�mpΩq s.
• If α � 1, αm = mΩ.

• If α � 1 � 1
1�mpΩq , αm = trm, where m

denotes the negation of m [3], defined by
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mpAq � mpAq, �A � Ω. In other words,
after being totally reinforced, each ba-
sic belief mass mpAq is transferred to its
complementary. The bba m is then fully
contradicted.

This scheme has been successfully applied in
medical imaging [16]. However, it suffers from
a lack of formal justification. Indeed, the
number (1�α) can no longer be interpreted as
a degree of belief as it can take values greater
than 1 and lesser than 0.

In the following section, a new parameter-
ized family of transformations encompassing
all the schemes presented in this section, is
introduced and justified.

4 A parameterized family of
correction mechanisms

In the discounting operation (8), agent Ag
considers that the source can be in two states:
reliable or not reliable. These states can be
interpreted as follows:

• if the source is reliable (state R), the
information m it provides becomes Ag’s
knowledge. Formally, mAgrtRus � m ,

• if the source is not reliable (state NR),
the information m it provides is dis-
carded, and Ag’s knowledge is vacuous:
mAgrtNRus � mΩ .

In this section, these hypotheses are extended
in the following way. We assume that the
source can be in N states Ri, i P v1, Nw, whose
interpretations are given by transformations
mi of m: if the source is in the state Ri then
mΩ

AgrtRius � mi.

Let R � tR1, . . . , RN u, and let us supposed
that mRAgptRiuq � νi, �i P v1, Nw, with°N

i�1 νi � 1.

The knowledge held by agent Ag, when receiv-
ing an information mΩ

S of a source S and pos-
sessing a metaknowledge mRAg regarding the
different states in which the source can be,
can then be computed by:

• deconditioning the mΩ
AgrtRius on the

product space Ω�R using (7);

• extending vacuously mRAg on the same
product space Ω�R using (4);

• combining them using the CRC (2);

• marginalizing the result on Ω using (3).

Formally:

mΩ
AgrmΩ

S ,mRAgs �� X©N
i�1m

Ω
AgrtRiusòΩ�R X©mRÒΩ�RAg

	ÓΩ
. (14)

Proposition 1 The bba mΩ
Ag, resulting from

equation (14), only depends on mi and νi, i Pv1, Nw. The result is noted νm, ν denoting
the vector of νi, and verifies:

mΩ
Ag � νm � Ņ

i�1

νi mi . (15)

Proof 1 �i P v1, Nw and �A � Ω:

mRÒΩ�RAg pΩ� tRiuq � νi , (16)

and

mΩ
AgrRisòΩ�RpA� tRiu Y Ω� tRiuq� mipAq . (17)

Moreover, �i P v1, Nw and �Ai � Ω:XN
i�1 pAi � tRiu Y Ω� tRiuq� YN

i�1Ai � tRiu , (18)

and, �j P v1, Nw:pYN
i�1Ai � tRiuq X Ω� tRju� Aj � tRju . (19)

Therefore, the conjunctive combination of
mΩ

AgrRisòΩ�R, i P v1,Nw, with mRÒΩ�RAg ,
noted X©mΩ�R

Ag , has N focal elements such
that:X©mΩ�R

Ag pAj � tRjuq �
νj mjpAjq¹

i�j A̧�Ω

mipAqlooooomooooon�1

, �j P v1,Nw ,

(20)
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or, equivalently, �A � Ω and �i P v1, Nw:X©mΩ�R
Ag pA� tRiuq � νi mipAq. (21)

Then, after projection onto Ω:

mΩ
AgpAq � Ņ

i�1

νi mipAq �A � Ω. (22)�
Correction mechanisms described in Section 3
are particular cases of correction mechanisms
expressed by (15).

The discounting operation corresponds to the
case of two states R1 and R2 such that m1 �
mΩ and m2 � m.

The de-discounting operation corresponds to
the case of two states such that m1 � m and
m2 � trm, which means a first state where
the information provided by the source is ac-
cepted, and a second state where this infor-
mation is totally reinforced. With these hy-
potheses, νm � ν1m � ν2

trm is a reparame-
terization of the de-discounting operation (10)
with ν1 � mpΩq�αp1�αqmpΩq , α P r0,mpΩqs. Indeed:

νmpAq� mpΩq�αp1�αqmpΩq mpAq � p1� mpΩq�αp1�αqmpΩq q mpAq
1�mpΩq� mpΩq�αp1�αqmpΩq mpAq � p1�αqmpΩq�mpΩq�αp1�αqmpΩq mpAq

1�mpΩq� mpΩq�αp1�αqmpΩq mpAq � α p1�mpΩqqp1�αqmpΩq mpAq
1�mpΩq� mpAq

1�α �A � Ω, and
νmpΩq� mpΩq�αp1�αqmpΩq mpΩq � mpΩq�α

1�α .

The first transformation of the extended dis-
counting operation, equation (8) with α Pr�mpΩq{p1 � mpΩqq, 1s, concerning the dis-
counting or reinforcement of the source, is a
reparameterization of (15) in the particular
case of two states such that m1 � mΩ and
m2 � trm with ν1 � p1 � αqmpΩq � α. In-
deed:$'''&'''% νmpAq � p1� p1� αqmpΩq � αq mpAq

1�mpΩq� p1� αq mpAq �A � Ω,

νmpΩq � p1� αqmpΩq � α.

At last, the second transformation of the ex-
tended discounting operation (13), allowing
one to contradict a source, is also a reparam-
eterization of (15) by considering two states
such that m1 � trm and m2 � mΩ, and
setting ν1 � pα � 1qp1 � mpΩqq with α Pr1, 1 � 1

1�mpΩq s:$'''''''&'''''''%
νmpAq � pα� 1qp1�mpΩqq mpAq

1�mpΩq� pα� 1q mpAq �A � Ω,

νmpΩq � 1� pα� 1qp1 �mpΩqq� 1� α� α mpΩq � 1�mpΩq� pα� 1qmpΩq � 2� α.

The source can be in two states: a first one
where the source is considered as lying (so
the contrary is correct) [14], and a second one
where the information provided by the source
is rejected.

All these results are recapitulated in Table 1.

Table 1: Models yielding to the correction
mechanisms presented in Section 3.

Interpretations Operation
m1 � mΩ m2 � m discounting
m1 � m m2 � trm de-discounting
m1 � mΩ m2 � trm extended disc. (1)
m1 � trm m2 � mΩ extended disc. (2)

Remark 1 The first transformation of the
extended discounting operation is then a dis-
counting of trm, while the second transforma-
tion is a discounting of trm.

Remark 2 The de-discounting operation is a
particular case of reinforcement process. A
more informative reinforcement than trm can
be chosen, for instance, the “pignistic bba” de-
fined, �ω P Ω, by:

betmptωuq � ¸tA�Ω,ωPAu mpAqp1�mpHqq|A| .

(23)
Thus, an other reinforcement process is given
by: νm � ν1m� ν2

betm.

Proposition 2 By choosing mRAg of the fol-
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lowing manner:#
mRAgptRiuq � νi �i P v1, Nw,
mRAgpRq � 1�°N

i�1 νi,

(24)
with

°N
i�1 νi ¤ 1, one more degree of freedom

can be added:

νm � Ņ

i�1

νi mi � p1� Ņ

i�1

νiqmΩ . (25)

5 An application example

In this section, an application example in the
domain of postal address recognition illus-
trates the possible benefits obtained by using
a correction mechanism.

In the present application, three postal ad-
dress readers (PARs) are available, each one
providing pieces of information regarding the
address lying on the image of a mail. These
pieces of knowledge are represented by belief
functions on a frame of discernment gathering
the whole postal addresses. Belief functions
can then be combined in order to make a de-
cision. This fusion scheme is represented in
Figure 1. The details of this application can
be found in [8], and the construction of the
mass assignments is explained in [7].

Figure 1: Fusion scheme with three PARs in
the belief function framework.

An extension is exposed by considering the
fact that PAR 1 and PAR 2 output an ad-
dress and a confidence score regarding the
town part of the address.

To visualize the real information provided by
these confidence scores, scores of correct and
incorrect towns output by PAR 1 for a set of
postal addresses are represented in Figure 2.

Figure 2: Confidence scores and addresses
provided by PAR 1 regarding images of a
learning set. A dark rhomb corresponds to
an address whose town is incorrect. A clear
square is associated with an address whose
town is correct.

It can be observed that the greater the score
is, the more important is the proportion of
addresses with a correct town. Hence, this
score carries useful information regarding the
reliability of the town information in the out-
put address. Similar observations were made
with PAR 2. Therefore, bbas m1 and m2 rep-
resenting the information provided by PAR 1
and PAR 2, should be corrected according to
these scores. An idea consists in reinforcing
the information provided by a PAR when the
score is high, and, conversely, discounting it
when the score is too low. For that purpose,
we defined four thresholds T1, T2, T3, and T4

illustrated in Figure 2, such that information
provided by the PAR is:

• totally discounted, if the score is lower
than T1;

• discounted according to the score, if the
score belongs to rT1, T2s;

• kept unchanged, if the score belongs torT2, T3s;
• reinforced according to the score, if the

score belongs to rT3, T4s;
• at last, totally reinforced, if the score is

greater than T4.

Formally, this adjustment can be realized, for
both PARs 1 and 2 (Figure 3), by using the
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correction mechanism defined by:

νm � ν1 mΩ � ν2 m� ν3
trm , (26)

where parameters νi are set as illustrated in
Figure 4.

Figure 3: An extended model adjusting bbas
provided by PAR 1 and PAR 2 according to
supplied scores.

Figure 4: Correction parameters as function
of the scores (ν1 � ν2 � ν3 � 1).

Performances of this combination, on a test
set of mails, are represented in Figure 5.
To preserve the confidentiality of PARs per-
formances, reference values have been used
when representing performance rates. Cor-
rect recognition rates, represented on the x-
axis, are expressed relatively to a reference
correct recognition rate, denoted R. Error
rates, represented on the y-axis, are expressed
relatively to a reference error rate, denoted E.
The rate R has a value greater than 80%. The
rate E has a value smaller than 0.1%.

In this application, different PARs being
available, a combination leading to the great-
est possible recognition rates, while being as-
sociated with an acceptable error rate, is ex-
pected. In this paper, the maximal tolerated

Figure 5: PARs and combination perfor-
mances regarding towns written on mails.

error rate is chosen equal to the least PARs
error rates.

This extended model allows us to obtain a
combination point denoted C�, which is as-
sociated with an acceptable error rate and
a greater recognition rate than the previ-
ous combination point C, obtained with the
model illustrated in Figure 1. Then, PARs
individual performances are improved once
more using the extended model based on a
correction mechanism.

6 Conclusion

In this paper, links between the discount-
ing, the de-discounting, and the extended dis-
counting have been clarified. It has been
shown that these schemes are particular cases
of a general correction mechanism process.
Different transformations, expressed by belief
functions, can be associated to different states
in which the source can be: reliable, not reli-
able, too cautious, lying, . . .

An application example illustrates the practi-
cal interest of this family. It introduces a way
to combine scores with decisions to improve
the performances of the recognition.

Future works consist in contextualizing this
family in the same manner as it has been done
with the discounting [10]. Likewise, it would
be interesting to automatically learn the coef-
ficients νi from data, as it has been proposed
for the classical or the contextual discounting
[4, 10].

312 Proceedings of IPMU’08



References

[1] A. Dempster (1967). Upper and Lower
Probabilities Induced by Multivalued
Mapping. Annals of Mathematical Statis-
tics, volume AMS-38, pages 325-339,
1967.

[2] T. Denœux and Ph. Smets (2006). Clas-
sification using Belief Functions: the Re-
lationship between the Case-Based and
Model-Based Approaches. IEEE Trans-
actions on Systems, Man and Cybernet-
ics, Part B, volume 36, issue 6, pages
1395-1406, 2006.

[3] D. Dubois and H. Prade (1986). A set-
theoretic view of belief functions: logical
operations and approximations by fuzzy
sets. International Journal of General
Systems, volume 12, pages 193-226, 1986.

[4] Z. Elouedi, K. Mellouli and Ph. Smets
(2004). Assessing sensor reliability for
multisensor data fusion with the trans-
ferable belief model. IEEE Transactions
on Systems, Man and Cybernetics B, vol-
ume 34, pages 782-787, 2004.

[5] I.R. Goodman, R.P. Mahler and H.T.
Nguyen (1997). Mathematics of Data Fu-
sion. Kluwer Academic Publishers, Nor-
well, MA, USA, 1997.

[6] J. Kohlas and P.-A. Monney (1995). A
Mathematical Theory of Hints. An Ap-
proach to the Dempster-Shafer Theory
of Evidence. Lecture Notes in Economics
and Mathematical Systems, volume 425,
Springer-Verlag, Berlin, 1995.

[7] D. Mercier, G. Cron, T. Denœux and
M. Masson (2005). Fusion of multi-
level decision systems using the Transfer-
able Belief Model. In Proceedings of the
8th International Conference on Infor-
mation Fusion, FUSION’2005, Philadel-
phia, USA, paper C8-2, July 25-29, 2005.

[8] D. Mercier, G. Cron, T. Denœux and M.-
H. Masson (2007). Fusion de décisions
postales dans le cadre du Modèle des
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