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Abstract

In this paper we develop a method for
conflict management within
Dempster-Shafer theory. The idea is
that each piece of evidence is
discounted in proportion to the degree
that it contributes to the conflict. This
way the contributors of conflict are
managed on a case−by−case basis in
relation to the problem they cause.
Discounting is performed in a
sequence of incremental steps, with
conflict updated at each step, until the
overall conflict is brought down
exactly to a predefined acceptable
level.

Keywords: Dempster-Shafer theory, belief
function, conflict, conflict management,
discounting.

1 Introduction

In this paper we develop a method for conflict
management within Dempster-Shafer theory
[3, 4, 19−21, 24, 25] where it is assumed that
all belief functions are referring to the same
problem or alternatively that they are false.

In general a high degree of conflict is seen as
if there is a representation error in the frame of
discernment, while a small conflict may be the
result of measuring errors.

One type of representation error resulting in
high conflict is when belief functions
concerning different subproblems that should
be handled independently are erroneously
combined [10, 11]. When this is the case the

assumption that all belief functions combined
must refer to the same problem (not different
subproblems) is violated.

We may interpret the conflict as metalevel
evidence stating that at least one piece of
evidence in the combination should not be part
of that combination. By temporarily removing
(and replacing) each belief function from the
combination, one at a time, we induce a drop
in conflict. This is used to derive metalevel
evidence regarding each individual belief
function indicating that this particular belief
function does not belong to the problem in
question.

When assuming that there is only one problem
at hand, such metalevel evidence must be
interpreted as a proposition about the falsity of
this belief function. A normalization of the
drop in conflict will be shown to be the degree
of falsity of that belief function.

However, instead of directly discounting each
piece of evidence to its individual degree of
falsity we take an incremental step in that
direction for all belief functions. Based on
these initial discounts we recalculate conflict
and update all degrees of falsities. The process
is performed sequentially until a predefined
level of maximal acceptable conflict is
reached. With this sequential approach we
obtain a smooth discounting process
(compared to if we would have fully
discounted each belief function to its degree of
falsity) and we are able to exactly match any
level of acceptable conflict without risk of
overshooting.

An alternative way to manage the conflict is to
assume that there are different subproblems
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where the set of basic belief assignments
(bbas) may be distributed to different clusters
that should be handled separately [2, 10−18].

Another approach also using meta-knowledge
regarding the reliability of the source is
contextual discounting [7]. A recent overview
of different alternatives for conflict
management when combining conflicting
belief functions was given by Smets, see [23].

In Section 2 we investigate the degree of
falsity of a piece of evidence. In Section 3 we
develop a method of sequential incremental
discounting using the degree of falsity. We
perform an experiment to investigate the
behavior of an algorithm for conflict
management in Section 4. Finally, conclusions
are drawn in Section 5.

2 Degree of falsity

Let us recapitulate the interpretation of
conflict as if there is at least one piece of
evidence that violates the representation given
by the frame of discernment, and thus can be
said not to belong to the set of bbas that refer
to this problem χ [11].

A conflict in χ is thus interpreted as a piece of
metalevel evidence that there is at least one
piece of evidence that does not belong to the
subset,

(1)

where  is the initial conflict in χ.

Let us observe one piece of evidence eq in χ. If

eq is taken out from χ the conflict in χ

decreases to . This decrease in conflict
can be interpreted as follows: there exists
some metalevel evidence indicating that eq
does not belong to χ,

(2)

and the remainder of the conflict after eq
has been taken out from χ is metalevel
evidence that there is at least one other piece

of evidence ej, j ≠ q, that does not belong to
χ − {eq},

(3)

We will derive the basic belief number (bbn)
by stating that the belief in the

proposition that there is at least one piece of
evidence that does not belong to χ, ,

should be equal no matter whether we base
that belief on the original piece of metalevel
evidence, before eq is taken out from χ, or on a
combination of the other two pieces of
metalevel evidence and

, after eq is taken

out from χ, i.e.,

. (4)

We have, on the left hand side (LHS),

(5)

and, on the right hand side (RHS),

(6)

Setting LHS = RHS, we get

(7)

This is the degree of falsity of eq under the
assumption that we are dealing with one
problem, not several different subproblems.
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3 Sequential incremental discounting

In this section we investigate how to manage
the conflict on an individual case−by−case
basis using the degree of falsity.

If then eq is certainly false and

must not be used in the combination. This

becomes the situation when for any

. For we define
as the proposition is not

supported when conflict remains unchanged,
equal to 1. When then we have

no indication regarding the falsity of eq and
will take no additional action. This is the
situation when we observe no change in

conflict . When ,

then eq contributes to the overall conflict and
its conflict contribution must be managed. We
would then like to pay less regard to a piece of
evidence the higher the degree is that it is
false, pay no attention to it when it is certainly
false, and leave it unchanged when there is no
indication as to its falsity. This can be done by
using the discounting operation.

The discounting operation was introduced to
handle the case when the source of some piece
of evidence is lacking in credibility [19]. The
credibility of the source, α, also became the
credibility of the piece of evidence. The
situation was handled by discounting each
supported proposition other than Θ with the
credibility α and by adding the discounted
mass to Θ;

. (8)

We will use the same discounting operation in
this case when there is a direct indication for
each separate piece of evidence regardless of
which source produced it.

As the degree of falsity of eq is proportional to
the conflict that eq contributes to the overall
conflict we discount it using its credibility.
The conflict in Dempster’s rule when
combining all pieces of evidence regarding eq,

as identical to one minus the credibility of the
evidence;

. (9)

At step d, represents the conflict in χ
after d sequential discounts of all bbas, and

is the remaining conflict we would have
in χ after d sequential discounts of all bbas if
eq is taken out from χ at this stage before
combining.

Using the credibility (degree of falsity) we
may derive a set of incrementally discounted

bbas  as

(10)

where  and  is the initial set of bbas.

Alternatively, we can also rewrite Eq. (10) as,

(11)

where

(12)

The combinations of all bbas in Eq. (12) using
Dempster’s rule is carried out by first
converting all bbas to commonality functions
[19],

. (13)

Secondly, we multiply all commonality
functions,

(14)

to obtain the unnormalized Dempster’s rule.

Finally, we convert back to bbas in order to
register the received conflict. We get,
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(15)

When , this can be simplified to

(16)

i.e., when we are only interested in the

conflict. Here, and

. Using Eq. (10) we now obtain

the sought after discounted bbas at the next
step d + 1.

In each situation the bbas are sequentially
discounted by repeated use of Eq. (10) and Eq.
(12), followed by combination using Eq. (13),
Eq. (14) and Eq. (15), see Figure 1.

Figure 1. The process of sequential
discounting and combination. Red arrows is

sequential discounting. Blue arrows are
combination.

In Algorithm 1 we describe an algorithm for
performing sequential incremental discounting
of all bbas.
The maximum conflict allowed is considered
to be a domain dependent parameter.

4 An experiment

In this section we conduct an experiment with
ten bbas over a frame of discernment with
three elements and seven possible focal
elements. We study the combination of the
bbas and the use of conflict management
through their sequential discounting using the
degree of falsity and a gain factor of ε = 0.1. In
an experiment with higher gain factors (not

shown), e.g. ε = 0.3, the curves of

evidently become step-wise linear.

Algorithm 1: Algorithm for sequential
incremental discounting

INITIALIZE

(the bbas); k (0 < k < 1, the

maximum conflict allowed); ε = 0.1 (a gain
factor); d = -1;

REPEAT

d = d + 1;

Calculate  using Eq. (12);

Calculate  using Eq. (12);

Calculate  using Eq. (10);

UNTIL

;

RETURN

;

Each bba has a random number of focal
elements , where the number nq

is drawn with a uniform probability within the
interval. The nq focal elements are then drawn

with a uniform probability
from the set . With probability 1 we
include Θ in the bba. Each focal element is
given a random bbn drawn uniformly from

, , where β is chosen such that the
bbns sum up to 1. As these bbas are
constructed randomly, they are not constructed
with any particular problem in sight, they are
bound to be highly conflicting and a
challenging test case.

Let us observe the process of sequential
incremental discounting. At each step d in the
sequential discounting we calculate the degree
of falsity for all bbas. However, instead of
discounting each bba to its full degree of
falsity

, (17)
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as was done in [11], we take an incremental
step in that direction by assigning

, (18)

where ε is a gain factor, . In our
experiments we use Algorithm 1 with ε = 0.1.
We have

(19)

at step d, where and are calculated
using Eq. (12).

In Figure 2 we observe the conflict when we
combine the ten bbas with Dempster’s rule
after different numbers of successively
performed incremental discounts.

Figure 2. Conflict decreasing with sequential
incremental discounting.

We notice an initial steady decline in conflict
which is later somewhat moderated. As the
conflict may be interpreted as a piece of
metalevel evidence that there is something
wrong with the representation of the problem
we should at least request a conflict less or
equal to 0.5. This level is reached after 42
incremental discounts.

In Figure 3 we observe the sequential

incremental discounting factor for

different bbas eq. The initial discounting
varies strongly between 1−5% where the

discounting is proportional to the degree

of credibility .

Figure 3. Sequential  for ten bbas

, for successive steps d with ε = 0.1.

As examples of how the bbas are changed by
the sequential discounting, let us observe this
for four different bbas in Figure 4. In each

case the blue line corresponds to and the

other lines correspond to other focal elements
. From these examples we notice

especially the increase of nonspecificity in the

bbas as support for increases with

discounting.

Figure 4. Four different bbas sequentially

discounted;  blue line.

The successive combination of the ten bbas are
shown in Figure 5 and Figure 6, without and
with normalization, respectively. At each step
d each bba is first discounted. After
discounting, all bbas are combined. This
process is illustrated in Figure 1. In Figure 5
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we observe at each step the combined result,
where the bbns are shown in blue (except for

, red, and , green). The bbns for

identical focal elements at different steps are
shown as curves.

Figure 5. Combination of sequentially
discounted bbas without normalization. Red

line is . Green line is .

Figure 6. Combination of sequentially
discounted bbas with normalization. Red line

is . Green line is .

In Figure 6 we notice how the preferred
hypothesis changes with sequential
discounting as bbas which are highly
conflicting have a high degree of falsity and
are more strongly discounted than others.
Here, the two hypotheses that initially were
1st and 3rd, become 2nd and 1st at the 42nd
sequential discount (the 50% conflict level).

We notice that the last change in preference
order takes place at the 20th sequential
discount around the 70% conflict level. Thus,
in practice k can be fairly high.

In an experiment with 10000 sequential
discounts (not shown) we notice that when d

→∞ then → 1 slowly in a logarithm-like

way.

As information is lost by discounting it may be
viewed as a necessary evil in order to manage
the conflict (when this is high). Obviously, if a
poor representation of the problem at hand
(through the frame of discernment) is the
cause of the conflict rather than poorly
represented input data, we should change the
frame of discernment. We measure the
information lost by studying entropy measures
[8, 9] as the sequential discounting

progresses1.

A measure of average total uncertainty (H) [9]
must measure uncertainty both due to
scattering of uncertainty (G) and uncertainty
due to the nonspecificity (I) of supported focal
elements;

. (20)

A measure of scattering was defined by Pal,
Bezdek and Hemasinha [9] as

, (21)

where is the set of focal elements, i.e.,

 whenever .

Dubois and Prade defined a measure of
nonspecificity [5] as

. (22)
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and Hemasinha [9] then defined a measure of

average total uncertainty as the sum of

the two equations,
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(23)

As they pointed out in [9] this measure

reduces to Shannon’s entropy [22] when

represents a probability distribution (i.e.,
) and to Hartley’s information [6]

when is certain (i.e., ).

Obviously, the average total uncertainty

reaches its minimum when both

conditions apply, i.e., .

In Figure 7 we observe the entropy at

different stages d of the sequential
discounting. We observe a rapid increase in
Shannon entropy in the unnormalized case as
mass is transferred away from the empty set as
discounting progresses. This is of course the
whole point of discounting.

Figure 7. Entropy increases with discounting.
Shannon; unnormalized (red). Shannon;
normalized (green). Hartley; normalized

(blue). Average total uncertainty; normalized
(black).

More interesting is to observe the change in
entropy for the normalized case (green line) as
that excludes the empty set from the
summation of scattering. Also, the Hartley
information is only defined for normalized
bbas.

Again, we observe a more moderate increase
in Shannon’s entropy as mass previously on

the empty set is scattered among the

other subsets of the frame as the sequential
discounting progresses, Figure 5. For Hartley’s
information measure (blue line) we observe a
rather small increase in entropy as mass is
transferred towards the frame as a whole

. As a consequence, the average total

uncertainty (black line) is

mostly characterized by increasing scattering,
and to a smaller degree by nonspecificity.

As is apparent from Figure 6 the loss of
information by discounting does not make the
analysis difficult. Rather it makes the
conclusions that may be drawn from the
combination of discounted belief functions
more reliable, as the conflict is reduced. For
instance, after 20 sequential discounts (see
Figure 6) the preference order of supported
focal elements becomes stable.

5 Conclusions

We have demonstrated that we can
successfully manage the conflict of
Dempster’s rule by making well motivated and
precise discounting of all belief functions.
Such discounting is made individually for each
belief function in proportion to its degree of
falsity. We show that by performing the
discounting process in a series of incremental
steps we can reach any predefined acceptable
level of conflict. In an experiment we find that
this discounting does not normally make it
more difficult to identify the most supported
proposition. Rather it makes the selection
process of the preferred proposition more
robust when highly conflicting pieces of
evidence are discounted down to a level they
deserve.
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