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Abstract 
We suggest an approach to the 
aggregation of non-independent belief 
structures that makes use of a weighted 
aggregation of the belief structures 
where the weights are related to the 
degree of dependence.  It is shown that 
this aggregation is non-commutative, 
the fused value depends on the 
sequencing of the evidences.  We then 
consider the problem of how best to 
sequence the evidence.  We investigate 
using the measure of information 
content of the fused value as a method 
for selecting the appropriate way to 
sequence the belief structures. 

Keywords: Multi-source data fusion, Dempster-
Shafer theory, aggregation, information 
measures, non-independence. 

1. Introduction 
 The Dempster-Shafer theory of evidence [1] 
is an important tool in granular computing and 
particularly useful in the task of multi-source 
information fusion.  Central to its application in 
information fusion is the use of Dempster's rule 
for combining belief structures.  Implicit in the 
use of Dempster's rule is the assumption that the 
belief structures are independent.  In many cases 
this assumption does not necessarily hold.  Our 
objective here is to look at the problem of 
applying Dempster's rule in the case where there 
might be some non-independence between the 
pieces of evidence. 

 

2.  Aggregation of Non-Independent 
Belief Structures 
 The basic Dempster rule for aggregating 
belief structures assumes independence between 
the belief structures being aggregated.  If m1 
and m2 are two belief structures when we 
calculate m = m1 ⊕ m2 we are assuming that 

m1 and m2 are independent.  The concept of 
independence used here is somewhat a vague 
idea.  Intuitively what is meant by independence 
is that idea that the pieces of evidence m1 and 
m2 have been determined in some sense by 
different means.  A clear example of 
independence is when two people separately 
observe an individual and then each provide an 
estimate of the person’s age.  Independence is 
less clear if the two people are in the same room 
with each other while observing the person.  
Here the possibility of one affecting the other 
exists. 
 One reason for the concern for 
independence is the lack of idempotency of the 
Dempster's rule, m ⊕ m ≠ m.  To get some 
intuition consider a piece of evidence m1 which 
is a simple support function m1({x1}) = α and 

m1(X) = ! .  Here the evidence is pointing to 

the value x1 with support !.  The value !  can 
be seen as our uncertainty in this belief.  
Consider an additional piece of evidence m2 
which formally is the same as m1 that is 

m2({x1}) = α and m2(X) =! . 
 Combining these two pieces of evidence 
using Dempster's rule gives m = m1 ⊕ m2 
where m({x1}) = α 2 + 2 α (1− α) =  α (2 - α) 
and m(X) = (1 - α)2. Since 2 - α > 1 then α (2 - 
α) > α by combining these two pieces of 
evidence we have increased the support for x1.  
If the two pieces of evidence have been supplied 
by two independent sources then the combining 
of these to get more support for x1 appears to be 
reasonable.  On the other hand assume that the 
evidence m2 is supplied by the same person 
who supplied m1 then combining of these to 
obtain more support for x1 would appear to be 
inappropriate.  Here we have a case of complete 
non-independence. 
 In the following we shall suggest a formal 
extension of Dempster's rule to allow for the 
aggregation of non-independent evidence.  More 
generally we will allow for a degree of 
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independence λ ∈ [0, 1] where λ = 1 is 
complete independence and λ = 0 is complete 
dependence.  We shall see that the introduction 
of non-independent evidence will result in a 
situation in which the aggregation is no longer 
commutative.  That is the order in which we 
aggregate the evidence will affect the results.  
Before proceeding we introduce a weighting 
operator on belief structures that we will use in 
the aggregation of non-independent belief 
structures.   
 Let m be a belief structure on X with focal 
elements Bi, i = 1 to q and m(Bi) as the 
associated weights.  Let a be a value in the unit 
interval we define a ⊗ m as a belief structure  m  
on X that has as its focal elements all the focal 
elements of m, Bi = 1 to q, plus X as a focal 
element X.  The associated weights are as 
follows: 
  m (Bi) = a m(Bi) i = 1 to q 

  m (X) = (1 - a) 
Note: If X is one of the focal elements of m, Bq 
= X then 
  m (Bi) = a m(Bi) i = 1 to q - 1 

  m (Bq) = a m(Bq) + (1 - a). 
 We shall refer to the operation a ⊗ m as 
significance weighting.  We note that it is 
closely related to what Shafer [2] called 
discounting. 
 We now describe our approach for the case 
of two pieces of evidence.  Assume we have a 
piece of evidence m1 and we now get an 
additional piece of evidence m2.  Let λ indicate 
the analyst's perception of the degree to which 
m2 is independent at m1.  Using this degree of 
independence we get that our combined belief 
structure is  

m = m1 ⊕ (λ ⊗ m2). 
If λ = 1 we get that 1 ⊗ m2 = m2 that m = m1 ⊕ 
m2 which is the usual result for Dempster's rule. 
 On the other hand if λ = 0 then 0 ⊗ m2 = 
mv the vacuous belief structure, it has one focal 
element X.  In this case m = m1 ⊕ mv = m1.  
Here we get the aggregated value to be m1. 
 In the preceding we have implicitly assumed 
a sequencing of the pieces of evidence.  
Essentially we have assumed m1 first and then 
m2.  While the value of λ is indifferent to the 
sequencing, the actual result is dependent on the 

sequencing.  If we consider m2 first in the 
sequence then our aggregate will be m = m2 ⊕ 
(λ ⊗ m1).  If λ = 1 then the sequencing doesn't 
matter, we get the same result.  At the other 
extreme if λ = 0 in the case where m2 is first in 
the sequence we get 

m =  m2 ⊕ (0 ⊗ m1) = m2 ⊕ mv = m2. 
Thus we see that the sequencing of the evidence 
matters.  Here then we see the essential non–
commutativity of the aggregation in the face of 
non-independence. 
 Before we address the issue of determining 
the sequencing let us introduce a general 
framework for the aggregation of possibly non-
independent belief structures. 
 Assume m1, m2, ….., mq are the collection 
of belief structures.  Let Seq be a sequencing of 
the belief structures.  Let Seq(j) be the index of 
the jth belief structure in the sequencing.  Thus 
our sequence is 

mseq(1) → mseq(2) → ......... → mseq(q). 
 We formulate the sequential aggregation of 
these belief structures as 

m = mseq(1) ⊕ (δseq(2) ⊗ mseq(2)) ⊕ ..... ⊕ 
(δseq(q) ⊗ mseq(q)) 

   m = mseq(1) ⊕  !
j=2

q

("seq( j)#mseq( j) ) . 

 Here δseq(j) is the degree of independence 
of the evidence mseq(j) from the previous 
aggregated values.  That is δseq(k) is the degree 
of independence of mseq(k) from 

mseq(1) ⊕  !
j=2

k"1

(#seq( j)$mseq( j) ) . 

If by convention we denote δseq(1) = 1 then we 
can succinctly express this aggregation as 

m = !
j=1

q

("seq( j)#mseq( j) ) . 

 We note here that if all the pieces of 
evidence are independent, for all j δseq(j) = 1, 
then we have m = mseq(1) ⊕ mseq(2) + ..... ⊕ 
mseq(q), this is Dempster's rule. 
 As already noted once when move away 
from the implicit assumption of independence 
and allow considerations of dependence we 
encounter non-commutativity.  This introduces 
considerable complexity.  A by-product of this 
allowance for non-independence will be the 
requirement that the analyst makes some 
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subjective choices affecting the aggregation 
process. 
 In this environment two questions naturally 
arise.  The first is how do we estimate the 
degree of independence, the values for δseq(j) 
used in the preceding formula.  The second 
question is how do we sequence the evidence in 
the aggregation. 
 The first question will require a much 
deeper discussion of what is independence than 
we are prepared to undertake at this time.  The 
calculation of degree of independence will 
clearly be context dependent.  It would also 
appear that non-independent evidence should 
manifest some degree of similarity. 
 We can make one formal contribution to the 
problem of determining the values of δseq(j).  
This is the situation where the calculation of 
δseq(j) is what we shall call decomposable. 
 Assume λ is a q × q matrix whose 
components λij indicate the degree of 
independence between mi and mj.  For this 
matrix we assume λii = 0 and λik = λki, it is 
symmetric. 
 If we have such a matrix and assume 
decomposability we can very effectively obtain 
the values of δseq(j).  In particular we can 
obtain for j > 1 

δseq(j) = Min
j!1

k=1
["seq(k) # $seq(k)seq( j) ] . 

Here !seq(k) = 1 - δseq(k) and ∨ is the max 
operator.  We of course assume δseq(1) = 1. 
 In the special case where λij = 1 for all j ≠ i 
then we see that δseq(j) = 1 for all j.  In this case 
we have essentially assumed independence and 
we get Dempster's rule. 
 At the other extreme is the case where λij = 
0 for all pairs.  In this case since δseq(1) = 1 we 
have δseq(j) = 0 for j ≠ 1.  This is the case of 
complete dependence.  Here we will get as the 
aggregated value m = mseq(1). 
 
3. On the Issue of Sequencing 
 We now turn to the issue of deciding on the 
sequencing of the evidence to be used in our 
aggregation.  We note that if we have q pieces 
of evidence there are q! different ways to 
sequence the pieces of evidence.  Each of these 
sequencing can lead to a different aggregated 
value. 

 At the most fundamental level the task of 
deciding the sequencing is going to involve 
some subjective choices by the agent who is 
ultimately responsible for the result of the 
fusion.  As there is no absolute predetermined 
rule for deciding how to sequence the evidence, 
the choice of how to sequence the evidence 
must be made by the responsible agent in 
consultation with their information analyst.  In 
the following we look at some features that can 
be used as a basis to decide on a sequence. 
 Clearly any features distinguishing the 
evidences to be aggregated may be useful.  
Temporal differences between the pieces of 
evidence may be useful; this may be particularly 
useful in a dynamic environment where things 
are changing.  Here we may put the more recent 
evidence earlier in the sequence.  Another 
feature that may be useful is some distinction 
between the credibility of the sources.  Here we 
may sequence the evidence by perceived 
credibility.  Here the more credible the earlier in 
the sequence. 
 Here I distinguish between what I call 
external and internal features of a piece of 
evidence.  By internal features of a piece of 
evidence I mean properties associated with the 
actual evidence itself, essentially the function m 
and the associated focal elements.  By external 
features I properties related to who supplied the 
evidence, when it was supplied, the credibility 
of the supplier.  Possible synonyms for external 
and internal features could be pedigree and 
content of the evidence.  In situations in which 
we have no external features distinguishing the 
evidence or we don't believe the ones we have 
are useful we must turn to internal properties of 
the evidence to help decide on the sequencing. 
 One possible way to sequence the evidence 
is such that the resulting aggregation provides 
the most information, the greatest certainty 
regarding the value of the variable.  That is 
using this approach we fuse the information 
using all the possible q! sequences and then we 
select the sequencing that leads to the fused 
value providing the most information.  Central 
to this type of approach is the ability to compare 
the information content of the belief structures 
that result from each sequence.  We now turn to 
this issue. 
 
4. Information Content for Comparing 

Sequencing 
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 We start the task of developing tools for 
comparing the information contained in belief 
structures by looking at the case of the 
aggregation of two pieces of evidence. 
 Consider the case where m1 and m2 are 
simple support functions focused on the same 
value y and their degree of independence is λ.   
Here m1({y}) = a and m1(X) = 1 - a while 
m2({y}) = b and m2(X) = 1 - b. 
Here we assume a > b.  If we sequence them as 
m1 → m2 then we get as our aggregated value 

 m1/2 = m1 ⊕ (λ ⊗ m2)  = m1 ⊕  m 2 

where 
 
m2 ({y}) = λ b and 

 
m2 (X) = 1 - λb.  

Combining m1 with  
 
m2 we get 

 m1/2({y}) = 1 - (1 - a) (1 - λb) 
 m1/2(X) = (1 - a) (1 - λb) 

Thus m1/2({y}) = a + λ b a .  The bigger 
m1/2({y}) the more information, we are more 
certain about the value of the variable. 
 If we sequence them the other way, 
m2 → m1, we get m2/1({y}) = b + λ a b .  
Taking the difference we have 

m1/2({y}) - m2/1({y}) = (a - b)(1 - λ). 
We see that with a > b then m1/2({y}) > 
m2/1({y}).  Here to get the most information we 
sequence them m1 → m2, we first take the 
evidence with the largest support for y.  
 Consider another case of m1 and m2 still 
with λ degree of independence 
m1({y}) = a m2({y, z}) = a 
m1(X) = 1 - a m2(X) = 1 - a 
Here it is clear that m1 has more information.  
Combining these in the sequence m1 → m2 we 
have m1/2 = m1 ⊕ (λ ⊗ m2) and we get 
 m1/2({y}) = a λ b + a (1 - λb) = a 

 m1/2({y, z}) = a ( a  λ) 
 m1/2(X) = (1 - a) (1 - λa). 
Combining them in the sequence m2 → m1 we 
have m2/1 = m2 ⊕ (λ ⊗ m1) this gives us  

 m2/1({y}) = λa2 + (λa)(1 - a) = λ a 
 m2/1({y, z}) = a (1 −λ a) 
 m2/1(X) = (1 - a) (1 - λ a). 
Since m2/1(X) = m1/2(X) the difference 
between m1/2 and m2/1 is determined by the 
weights on {y} and {y, z}.  Since m1/2({y}) ≥ 

m2/1({y}) then we see that m1/2 is more 
informative. 
 Consider another case again with degree of 
independence λ where 
 m1({y, z}) = a m2({y}) = 0.5 a 

 m1(X) = a  m2({z}) = 0.5 a 

  m2(X) = a  
 While in this case the determination as to 
which of m1 and m2 is more information is not 
as obvious as in the preceding we can, however, 
see that m2 is more informative as with this 
piece of evidence the source is sure as how the 
weight of a is divided between y and z. 
 For this example we first calculate m1/2 = 
m1 ⊕ (λ ⊗ m2).  In this case 
 m1/2({y}) = 0.5 a λ, m1/2({z}) = 0.5 a λ 

m1/2({y, z}) = a (1 - λ a), m1/2(X) = a  (1 - 
λ a). 
Calculating m2/1 = m2 ⊕ (λ ⊗ m1) then we get: 
    m2/1({y}) = 0.5 a, m2/1({z}) = 0.5 a 

   m2/1({y, z}) = λ a a , m2/1(X) = a  (1 - λ a). 
 Since m2/1(X) = m1/2(X) the difference 
between the two will be determined by the other 
focal elements.  Since m2/1({y}) > m1/2({y}) 
and m2/1({z}) > m1/2({z}) then we conclude 
that m2/1 has more information. 
 Since there are q! ways we can sequence q 
pieces we must eventually compare these q! 
aggregations and decide on the best.  In the 
special case when all the evidences are 
completely dependent then as we showed m = 
mseq(1).  It is the value of the first element in 
the sequence.  In this case there are only q 
possible first values.  Furthermore using the 
information content of the fused value as our 
determining factor we would select as the fused 
value the piece of evidence with the most 
information.  This seems reasonable. 
 
5. Using Range Containment 
 In the preceding simple examples we were 
able to indicate which belief structures had more 
information, less uncertainty, for more complex 
belief structure we need more sophisticated 
tools to compare belief structure regarding their 
information content.  Our objective here is to 
find some algorithm that enables us to determine 
whether the information content of belief 
structure m1, IC(m1) is greater than the 
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information content of belief structure m2, 
IC(m2).  In the following we begin this task. 
 One relationship [3] between two belief 
structures which definitely characterizes a 
situation in which we clearly know that IC(m1) 
> IC(m2) is described in the following.  Assume 
m1 and m2 are two belief structures on X.  For 
any subset of A of X we define Range1(A) = 
[Bel1(A), Pl1(A)] and Range2(A) = [Bel2(A), 
Pl2(A)].  We say that m1 is more informative 
than m2 if for all A we have  Range1(A) ⊆ 
Range2(A) and there exists at least one A such 
the Range1(A) ⊂ Range2(A).  We shall denote 
this as m1 ⇒  m2.  If Range1(A) = Range2(A) 
for all A we say m1 and m2 are equally 
informative and denote this as m1 ⇔  m2. 
 While the preceding definition correctly 
captures the idea of m1 being more informative 
than m2 it has two problems.  One pragmatic 
problem associated with this definition is the 
amount of work needed to calculate Range(A) 
for all subsets of X.  The second problem is 
more formal; the definition is not complete.  
That is there are belief structures for which 
neither m1 ⇒  m2 or m2 ⇒  m1 or m1 ⇔  m2 is 
true.  Nevertheless, we shall use this as a 
starting point for the difficult problem of 
comparing the information content of Dempster-
Shafer belief structures. 
 Yager [3] provided some tools that can help 
in the pragmatic issue of comparing belief 
structures by reducing in some cases the need to 
calculate Range(A) for all A. 
Definition:  Assume m1 is a belief structure 
with focal elements Ai for i = 1 to p where 
m(Ai) = ai.  Let m2 be another belief structure 
with focal element 

B11, B12, ..., B1n1, B21, ..., B2n2, ..., BpnP 

where m(Bij) = bij.  Furthermore we assume 
that Ai ⊆ Bij for all j = 1 to ni  and 

m(Bij) = ai
j=1

ni

!  for i = 1 to p.   In this case we 

say that m1 entails m2, we shall denote this as 
m1 ⊆ m2. 
 Yager [3] showed that if m1 ⊆ m2 then for 
all subsets A it is the case that  

[Bel1(A), Pl1(A)] ⊆ [Bel2(A), Pl2(A)]. 

Thus we see that if m1 ⊆ m2 then m1 ⇒  m2.  
We note that m1 ⊄ m2 doesn't mean that m1 is 
not more informative than m2. 
 In the above situation we turn the problem 
of determining whether m1 is more informative 
then m2 into just comparing the focal elements 
rather than having to compare the range for all 
the subsets of A. 
 A somewhat simplified version of the above 
condition can be formulated.  Assume m is a 
belief function of X with focal elements A1, ... 
Ap with weights m(Ai).  We can expand m by 
replacing any of its focal elements Aj with two 
focal elements D1 and D2 such that D1 = Aj and 
D2 = Aj where m(D1) + m(D2) = m(Aj). 
 Let m1 and m2 be two belief structures 
which can be expanded such that they have the 
same number of focal elements A1, ..., Aq and 
B1, ..., Bq such that Aj ⊆ Bj and m1(Aj) = 
m2(Bj) for all j = 1 to q.   In this we can show 
that for any subset A it is the case that  

[Bel1(A), Pl1(A)] ⊆ [Bel2(A), Pl2(A)]. 
 
6.  Indifference to Indexing 
 Our paradigm of using range containment 
for comparing information content of belief 
structures can be further enhanced.  In particular 
it can be made indifferent to the indexing.  
Consider two belief structures m1 and m2 
defined on X where 
 m1({x1}) = a m2({x2}) = a 
 m1(X) = 1 - a m2(X) = 1 - a. 
What should be clear is that these two belief 
structures are equally informative. 
 Perhaps a more intuitive manifestation is 
there would be the case where m1 and m2 are 
Bayesian.  For example m1 is such that  m1(x1) 
= 0.1, m1(x2) = 0.2, m1(x3) = 0.3, m1(x4) = 0.4 
and m2 such that m2(x4) = 0.1, m2(x3) = 0.2, 
m(x2) = 0.3, m(x1) = 0.4.  It is clear the 
uncertainty in both cases is the same. 
 Essentially we observe any procedure for 
comparing the information content of belief 
structures should be indifferent to the indexing.  
In the following we generalize this observation.  
First we introduce the idea of a replica. 
 Let R: X → X be a bijective mapping, it is 
one to one and onto.  Essentially R re-indexes 
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the elements in X, R is sometimes called a 
permutation.  If A is a subset of X by R(A) we 
shall mean a subset of X in which the elements 
of A have been re-indexed according to R.  Thus 
if X = {x1, x2, x3, x4} and R is such that: R(x1) 
= x3, R(x2) = x4, R(x3) = x1 and R(x4) = x2 
then if A = {x1, x2} we have R(A) = {x3, x4}.  
We note that the cardinality of R(A) is always 
the same as A. 
 Let m be a belief structure on X with focal 
element B1, B2, ….., Bq and weights m(Bj).  
Let R be a re-indexing function on X.  By R(m) 
we shall mean a new belief structure  %m  with q 
focal elements Aj = R(Bj) and where  %m (Aj) = 
m(Bj).  Thus here we have just re-indexed 
everything.  We shall call  %m  a replica of m. 
 We note that a special replica of m is the 
identity, here R(xi) = xi.   
 In the following we use the idea to replica to 
provide a general characterization of 
information content of a belief structure. 
 Let PIC be some procedure or rule for 
comparing the information content of two belief 
structures such that its application to any two 
belief structures m1 and m2, PIC(m1, m2), 
returns one of four states: 

a)  PIC(m1, m2) ⇒ IC(m1) > IC(m2)  (m1 is 
more informative) 

b)  PIC(m1, m2) ⇒ IC(m2) > IC(m1)  (m2 is 
more informative) 

c)  PIC(m1, m2) ⇒ IC(m1) = IC(m2)  (m1 and 
m2 equally informative) 

d)  PIC(m1, m2) ⇒ IC(m1) <> IC(m2)  (m1 

and m2 are incomparable) 
 A required property for PIC to be a valid 
procedure for comparing belief structures is that 
it be replica indifferent a property we define in 
the following.  Let R  be the set of all re-
indexing procedure on X.  Let (R1, R2) be any 
arbitrary pair of re-indexing procedures, R1 and 
R2 ∈ R .  Then replica indifference requires all 
PIC(R1(m1), R2(m2)) that do not evaluate to 
incomparable, < >, must evaluate to the same 
(>, <, or =).  Thus if there exists a pair R1 and 
R2 such that PIC(R1(m1), R2(m2)) evaluates to 
IC(R2(m2)) > IC(R1(m1)) then for any other 
pair R3 and R4 it must be the case that 
PIC(R3(m1), R4(m2)) evaluates to 

IC(R4(m2)) > IC(R3(m1)) or 
IC(R4(m2)) <> IC(R3(m1)).  Thus all pairs of 
replicas that are not incomparable evaluate to 
the same value in the set {>, <,=}. 
 The procedure suggested earlier for 
comparing the informativeness of m1 and m2 
using the containment of ranges of subsets, 
Range1(A) ⊆ Range2(A), is replica indifferent. 
Replica indifference enhances the usefulness of 
this procedure for comparing belief structures.  
In particular if m1 and m2 are two belief 
structures and there exists a replica of m2, m3 = 
R(m2) such that for all subset A we have 
Range1(A) ⊆ Range3(A) then m1 is more 
informative then m2. 
 
7. Protoforms for Determining IC 
Relationship 
 The combination of replica indifference 
with the entailment rule provides some very 
basic protoforms for determining the IC 
relationship.  We first consider the comparison 
of common classes of belief structure. 
 Let m1 be a belief structure so that m1(B) = 
1 where B is some subset of X of cardinality k.  
For simplicity let B = {x1, x2, ..., xk}.  Let m2 
be a Bayesian belief structure with k focal 
elements 

A1 = {x1}, A2 = {x2}, ..........., Ak = {xk} 
where m2(Aj) = pj.  We note that for xj ∉ B we 
have pi = 0. 
 We now introduce an expanded version of 
m1, 

 
%m1  with k focal elements Bj = B, j = 1 to k, 

where 
 
%m1 (Bj) = m2(Aj) = pj.  What we observe 

now is that the relationship between 
 
%m1  and m2 

is such that they both have k focal elements, A1, 
..., Ak and B1, ..., Bk with the same weights but 
Aj ⊆ Bj   Thus using our previous result about 
this situation we can conclude that m2 has more 
information that m1, IC(m2) > IC(m1). 
 Some interesting special cases of the 
following are worth noting.  One special case is 
where pj = 1

k
 for xj ∈ B.  Thus we see that a 

belief structure m1 with m1(B) = 1 is less 
informative then a Bayesian one in which pj = 
1

k
 for j = 1 to k.  Consider the case where B = 

294 Proceedings of IPMU’08



X, m1 is the vacuous belief structure, mv.  We 
have shown that the belief structure where pi = 
1

n
 for all xi ∈ X has more information.  This 

makes sense, since in the vacuous case we have 
no information. 
 In the preceding we have shown that if m1 
has m1(B) = 1 then m2 with focal elements 
Aj = {xj} for xj ∈ B with m2(Aj) = pj has more 
information than m1.  There is no reasoning 
why some of pj can't be zero.  From this we can 
conclude the following.  Let m1 be a belief 
structure with m1(B) = 1.  Let m2 be a belief 
structure with r ≤ |B| singleton focal elements, 
Ai = {xi} and xi ∈ B.  Essentially m2 is a kind 
of Bayesian structure.  In this case m2 must be 
more informative than m1. 
 Our requirement that the information 
comparison measure should be indifferent to 
indexing, the use of replicas, allows us to state 
the following theorem: 
Theorem:  Assume m1 is a belief structure with 
m1(B) = 1.  Let m2 be a belief structure with q 
singleton focal elements if q ≤ |B| then IC(m2) 
>IC(m1). 
 We emphasize here that it is not necessary 
for the elements in B to be the same as those in 
the focal elements of m2. 
 Actually we can provide an even more 
general result using the idea replica. 
Theorem:  Let m1 be a belief with m(B) = 1.  
Let m2 be a belief structure with q focal 
elements, Aj for j = 1 to q and m2(Aj) the 

associated weights.  Let A =
 

Ai
i=1

q

U , all the 

elements that appear in the focal sets of m2.  
Then if |A| ≤ |B| we have IC(m2) > IC(m1). 
Proof:   Using the idea of replicas we can 
determine a replica  %m  of m1 using a mapping R 
such that for each xj ∈ A there exists a xi ∈ B 
such that R(xi) = xj.  Once having this replica 

 %m  with R(B) =  %B  then since Ai ⊂  %B  the result 
follows. 
 Another interesting special situation is the 
following.  Assume m1 and m2 are simple 
support functions where 
 m1(A) = α m2(B) = β 

 m1(X) = (1 - α) m2(X) = (1 - β) 
Assume α ≥ β and |A| ≤ |B| then IC(m1) > 
IC(m2). 
 We see this as follows.  Assume 

 
%m2  is a 

replica of m2 based on a mapping R such that 
for each xi ∈ A there exists a xj ∈ B for where 
R(xj) = xi.  In this case R(B) =  %B  ⊃ A. In this 
case we have 

 
%m2 ( %B ) = β  and 

 
%m2 (X) = (1 - β).   

We can now expand m1 an 
 
%m2  

m1(A1) = β 
 
%m2 (B1) = β 

m1(A2) = α - β 
 
%m2 (B2) = α - β 

m1(X) = (1 - α) 
 
%m2 (X) = (1 - α) 

where A1 = A2 = A and B1 =  %B  and B2 = X.  It 
is clear in this case that Aj ⊆ Bj and 
hence IC(m1) > IC(

 
%m2 ) and hence IC(m1) > 

IC(m2).  
 Another interesting special case is the 
following.  Assume m1 and m2 are such that 
 m1(A) = α m2(B) = α 

 m2(A ) = 1 - α m(X) = 1 - α 
where |A| ≤ |B|.  In this case IC(m1) ≥ IC(m2). 
 
8. Entropy and Specificity to Compare 

Belief Structures 
While the use of the containment procedure for 
comparing the information contents of belief 
structures has been greatly extended it still can 
often result in incomparability between belief 
structures.  A very basic example of this occurs 
when we have Bayesian belief structures as 
shown below.  Consider the case where X = 
{x1, x2} and m1 and m2 are as described below 
 m1({x1}) = 0.9 m2({x1}) = 0.5 
 m1({x2}) = 0.1 m2({x2}) = 0.5. 
 In this case Range1({x1}) = [0.9, 0.9] and 
Range1({x2})= [0.1, 0.1] while Range2({x1}) = 
[0.5, 0. 5] and Range2({x2})  = [0.5, 0. 5].  
While these intervals are incomparable it is clear 
that m1 has less uncertainty than m2.  Thus we 
need further tools and procedures to help with 
the comparison of the information content of 
belief structures. 
 Earlier we introduced two measures to 
calculate the uncertainty associated with a 
Dempster–Shafer belief structure [4].  We recall 
if m is a belief structure with focal elements B1, 
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..., Bq then the specificity of m is defined as 

SP(m) = 1 - 
1

n !1
m(Bj)(| Bj | !1)

j=1

q

"  and the 

entropy of m is defined as 

H(m) = ! m(Bj) ln[Pl(Bj)]

j=1

q

" . 

 We now explore using these to help 
formulate a procedure for comparing the 
information content of belief structures.  We 
first observe that these measures are replica 
indifferent.  Thus if %m  = R(m) is a replica of m 
then Sp(m) = Sp( %m ) and H(m) = H( %m ).  This 
feature makes these two measures desirable for 
building procedures for comparing information 
content. 
 We further observe that Sp(m) = [0, 1] 
where the larger Sp(m) is associated with more 
information, less uncertainty.  For H(m) we 
have shown that H(m) ∈ [0, ln(n)], however, 
here the larger H(m) the less information, the 
more uncertainty.  In the following we shall find 
it more convenient to use a normalized version 

of H(m) which is G(m) = 1 - H(m)
ln(n)

.  In this case 

G(m) ∈ [0, 1] and the larger G(m) the more 
information, the less uncertainty. 
 We now shall suggest an additional 
procedure for comparing the information 
content of belief structures based on the use of 
the two measures Sp(m) and G(m).  We denote 
this PIC_2 and described in the following 
 Assume m1 and m2 are two belief structures 
we shall say that IC(m1) > IC(m2) if  

Sp(m1) ≥ Sp(m2) and G(m1) ≥ G(m2) and at 
least one of the ≥ is an >. 

Let us look at this procedure for comparing 
information content. 
 Consider the case where m1 and m2 are 
Bayesian belief structures.  As we have 
previously show for any Bayesian belief 
structure the specificity is one, thus Sp(m1) = 
Sp(m2) = 1.  Thus the only difference between 
Bayesian belief structures is their G(m) value.  
Since the larger G(m) the smaller the entropy 
this appropriately distinguishes between 
Bayesian belief structures based on the 
comparison of the entropy.  The smaller the 
entropy the larger the information conflict, thus 
if G(m1) > G(m2) then IC(m1) > IC(m2). 

 Consider now the belief structure where 
m(B) = 1.  In this case G(m) = 1 independent of 
B while Sp(m) = 1 -. |B|!1

n!1
= n!|B|
n!1

  Thus the 
smaller B the larger the specificity.  Here again 
the monotonicity will allow us to point to the 
belief structure with the smaller B as the more 
informative. 
 We now consider a situation we introduced 
earlier in which m1 and m2 are two belief 
structures with the same number of focal sets, 
A1, ..., Aq and B1, ..., and Bq where 
m1(Aj) = m2(Bj) and Aj ⊆ Bj for all j and Aj ⊂ 
Bj for at least one j.  In the preceding we 
showed that here we conclude that m1 is more 
informative than m2.  Let us look to see if our 
approach using Sp(m) and G(m) can capture 
this.  First we note that  

Sp(m1) = m(Aj)Sp(Aj) >

j=1

q

! m(Bj)Sp(Bj)

j=1

q

!  

 Sp(m1) > Sp(m2). 
Thus, m1 is more specific.  Consider the 
calculation of H(m).  Here we have  

H(m1) = - 
j=1

q

! m(Aj) ln(Pl(Aj))  

H(m1) = 
j=1

q

!  m(Aj) ln(1 - m(Ai))

i
Ai!Aj="

#  

H(m2) =  -
j=1

q

! m(Bj) ln(Pl(Bj))  

H(m2) =  
j=1

q

!  m(Bj) ln(1 - m(Bi))

i
Bi!Bj="

# . 

Since m(Bj) = m(Aj) the difference will depend 

only on the terms m(Ai)

i
Ai!Aj="

#  

and m(Bi)

i
Bi!Bj="

# .  Since Ai ⊆ Bi for all i 

then it follows H(m1) ≤ H(m2) and hence 
G(m1) ≥ G(m2).  Thus here since Sp(m1)> 
Sp(m2) and G(m1) ≥ G(m2) we see that m1 is 
more informative than m2. 
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9. On the Use of Information Content 
 In the preceding what became clear was that 
when we allow for the aggregation of non–
independent belief structures the aggregation is 
non-commutative.  The resulting fused value 
depends on the sequencing (ordering) of the 
beliefs structures in the aggregation.  We 
suggested one way to address this problem is to 
use the sequence that results in a fused value 
that provides the most information, least 
uncertainty. 
 In order to implement this approach we 
needed an algorithm to be able to compare two 
belief structures m1 and m2 and tell which is 

more informative.  In the preceding we 
suggested two algorithms.  The first PIC_1 was 
based on containment of ranges.  The second 
PIC_2 is based on based on comparing the 
specificity and entropy of belief structures. 
 If neither of these two methods allows us to 
choose one of the belief structures, they are 
incomparable under PIC_1 and PIC_2, we may 
try to use a less absolute method for comparing 
the information in belief structures.  Essentially 
in this case we may only try to find out if 
IC(m1) is "better than" IC(m2).  Here the 
concept "better then" is somewhat subjective.  
At this point we shall not pursue this only to 
make some comments.  One possibility here is 
obtain some monotonic function F(Sp(m), 
G(m)) and say m1 is better than m2, if 
F(Sp(m1), G(m1) > F(Sp(m2), G(m2)).  We 
note that Klir [5] and Abellan and Moral [6, 7] 
investigated functions of this nature.. 
 Our focus in determining the sequencing of 
non-independent belief structures has been to 
use the sequence that results in the most 
informative fused value.  In following this 
approach we are faced with some pragmatic 
problems.  In addition to the possibility of 
incomparability discussed above this approach 
can at times involve considerable computational 
complexity. In particular q pieces evidence 
require the investigation of q! sequences, a task 
that can lead to a lot of work.  Another option, 
which avoids this complexity, is to sequence the 
belief structures directly in terms of their 
information contents.  Thus if we have q belief 
structures we would use as our sequencing Seq 
such that Seq(j) is the belief structure with if jth 
largest amount of information.  Here we still 
have the possibility of incomparability.  This 

problem, however, may somewhat be reduced 
by the fact that the atomic belief structures may 
be simple and hence easy to compare. 
 
10. Conclusion 
 We reviewed some aspects of the Dempster-
Shafer theory of evidence.  We suggested an 
approach to the aggregation of non-independent 
belief structures.  This approach made use of a 
weighted aggregation of the belief structures 
where the weights are related to the degree of 
dependence.  It was shown that this aggregation 
is non-commutative, the fused value depends on 
the sequencing of the evidences.  We then 
considered the problem of how best to sequence 
the evidence.  We investigated using the 
measure of information content of the fused 
value as a method for selecting the appropriate 
way to sequence the belief structures. 
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