Aggregating Non-Independent Dempster-Shafer Belief Structures

Ronald R. Yager
Machine Intelligence Institute, Iona College
New Rochelle, NY 10801
yager@panix.com

Abstract

We suggest an approach to the aggregation of non-independent belief structures that makes use of a weighted aggregation of the belief structures where the weights are related to the degree of dependence. It is shown that this aggregation is non-commutative, the fused value depends on the sequencing of the evidences. We then consider the problem of how best to sequence the evidence. We investigate using the measure of information content of the fused value as a method for selecting the appropriate way to sequence the belief structures.

Keywords: Multi-source data fusion, DempsterShafer theory, aggregation, information measures, non-independence.

1. Introduction

The Dempster-Shafer theory of evidence [1] is an important tool in granular computing and particularly useful in the task of multi-source information fusion. Central to its application in information fusion is the use of Dempster's rule for combining belief structures. Implicit in the use of Dempster's rule is the assumption that the belief structures are independent. In many cases this assumption does not necessarily hold. Our objective here is to look at the problem of applying Dempster's rule in the case where there might be some non-independence between the pieces of evidence.

2. Aggregation of Non-Independent Belief Structures

The basic Dempster rule for aggregating belief structures assumes independence between the belief structures being aggregated. If m_{1} and m_{2} are two belief structures when we calculate $\mathrm{m}=\mathrm{m}_{1} \oplus \mathrm{~m}_{2}$ we are assuming that
m_{1} and m_{2} are independent. The concept of independence used here is somewhat a vague idea. Intuitively what is meant by independence is that idea that the pieces of evidence m_{1} and m_{2} have been determined in some sense by different means. A clear example of independence is when two people separately observe an individual and then each provide an estimate of the person's age. Independence is less clear if the two people are in the same room with each other while observing the person. Here the possibility of one affecting the other exists.

One reason for the concern for independence is the lack of idempotency of the Dempster's rule, $\mathrm{m} \oplus \mathrm{m} \neq \mathrm{m}$. To get some intuition consider a piece of evidence m_{1} which is a simple support function $\mathrm{m}_{1}\left(\left\{\mathrm{x}_{1}\right\}\right)=\alpha$ and $m_{1}(X)=\bar{\alpha}$. Here the evidence is pointing to the value x_{1} with support α. The value $\bar{\alpha}$ can be seen as our uncertainty in this belief. Consider an additional piece of evidence m_{2} which formally is the same as m_{1} that is $\mathrm{m}_{2}\left(\left\{\mathrm{x}_{1}\right\}\right)=\alpha$ and $\mathrm{m}_{2}(\mathrm{X})=\bar{\alpha}$.

Combining these two pieces of evidence using Dempster's rule gives $m=\mathrm{m}_{1} \oplus \mathrm{~m}_{2}$ where $m\left(\left\{\mathrm{x}_{1}\right\}\right)=\alpha^{2}+2 \alpha(1-\alpha)=\alpha(2-\alpha)$ and $m(X)=(1-\alpha)^{2}$. Since $2-\alpha>1$ then $\alpha(2-$ $\alpha)>\alpha$ by combining these two pieces of evidence we have increased the support for x_{1}. If the two pieces of evidence have been supplied by two independent sources then the combining of these to get more support for x_{1} appears to be reasonable. On the other hand assume that the evidence m_{2} is supplied by the same person who supplied m_{1} then combining of these to obtain more support for x_{1} would appear to be inappropriate. Here we have a case of complete non-independence.

In the following we shall suggest a formal extension of Dempster's rule to allow for the aggregation of non-independent evidence. More generally we will allow for a degree of
independence $\lambda \in[0,1]$ where $\lambda=1$ is complete independence and $\lambda=0$ is complete dependence. We shall see that the introduction of non-independent evidence will result in a situation in which the aggregation is no longer commutative. That is the order in which we aggregate the evidence will affect the results. Before proceeding we introduce a weighting operator on belief structures that we will use in the aggregation of non-independent belief structures.

Let m be a belief structure on X with focal elements B_{i}, $\mathrm{i}=1$ to q and $\mathrm{m}\left(\mathrm{B}_{\mathrm{i}}\right)$ as the associated weights. Let a be a value in the unit interval we define $\mathrm{a} \otimes \mathrm{m}$ as a belief structure m on X that has as its focal elements all the focal elements of $m, B_{i}=1$ to q, plus X as a focal element X . The associated weights are as follows:

$$
\begin{aligned}
& \mathrm{m}\left(\mathrm{~B}_{\mathrm{i}}\right)=\mathrm{am}\left(\mathrm{~B}_{\mathrm{i}}\right) \quad \mathrm{i}=1 \text { to } \mathrm{q} \\
& \mathrm{~m}(\mathrm{X})=(1-\mathrm{a})
\end{aligned}
$$

Note: If X is one of the focal elements of $\mathrm{m}, \mathrm{B}_{\mathrm{q}}$ $=\mathrm{X}$ then

$$
\begin{aligned}
& \mathrm{m}\left(\mathrm{~B}_{\mathrm{i}}\right)=\mathrm{am}\left(\mathrm{~B}_{\mathrm{i}}\right) \quad \mathrm{i}=1 \text { to } \mathrm{q}-1 \\
& \mathrm{~m}\left(\mathrm{~B}_{\mathrm{q}}\right)=\operatorname{am}\left(\mathrm{B}_{\mathrm{q}}\right)+(1-\mathrm{a})
\end{aligned}
$$

We shall refer to the operation a $\otimes \mathrm{m}$ as significance weighting. We note that it is closely related to what Shafer [2] called discounting.

We now describe our approach for the case of two pieces of evidence. Assume we have a piece of evidence m_{1} and we now get an additional piece of evidence m_{2}. Let λ indicate the analyst's perception of the degree to which m_{2} is independent at m_{1}. Using this degree of independence we get that our combined belief structure is

$$
\mathrm{m}=\mathrm{m}_{1} \oplus\left(\lambda \otimes \mathrm{~m}_{2}\right)
$$

If $\lambda=1$ we get that $1 \otimes \mathrm{~m}_{2}=\mathrm{m}_{2}$ that $\mathrm{m}=\mathrm{m}_{1} \oplus$ m_{2} which is the usual result for Dempster's rule.

On the other hand if $\lambda=0$ then $0 \otimes \mathrm{~m}_{2}=$ m_{V} the vacuous belief structure, it has one focal element X. In this case $m=m_{1} \oplus \mathrm{~m}_{\mathrm{V}}=\mathrm{m}_{1}$. Here we get the aggregated value to be m_{1}.

In the preceding we have implicitly assumed a sequencing of the pieces of evidence. Essentially we have assumed m_{1} first and then m_{2}. While the value of λ is indifferent to the sequencing, the actual result is dependent on the
sequencing. If we consider m_{2} first in the sequence then our aggregate will be $\mathrm{m}=\mathrm{m}_{2} \oplus$ $\left(\lambda \otimes \mathrm{m}_{1}\right)$. If $\lambda=1$ then the sequencing doesn't matter, we get the same result. At the other extreme if $\lambda=0$ in the case where m_{2} is first in the sequence we get

$$
\mathrm{m}=\mathrm{m}_{2} \oplus\left(0 \otimes \mathrm{~m}_{1}\right)=\mathrm{m}_{2} \oplus \mathrm{~m}_{\mathrm{V}}=\mathrm{m}_{2}
$$

Thus we see that the sequencing of the evidence matters. Here then we see the essential noncommutativity of the aggregation in the face of non-independence.

Before we address the issue of determining the sequencing let us introduce a general framework for the aggregation of possibly nonindependent belief structures.

Assume $\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots ., \mathrm{m}_{\mathrm{q}}$ are the collection of belief structures. Let Seq be a sequencing of the belief structures. Let $\operatorname{Seq}(\mathrm{j})$ be the index of the $\mathrm{j}^{\text {th }}$ belief structure in the sequencing. Thus our sequence is

$$
\mathrm{m}_{\operatorname{seq}_{(1)}} \rightarrow \mathrm{m}_{\operatorname{seq}(2)} \rightarrow \ldots \ldots \ldots \rightarrow \mathrm{m}_{\mathrm{seq}(\mathrm{q})}
$$

We formulate the sequential aggregation of these belief structures as

$$
\begin{aligned}
& \mathrm{m}=\mathrm{m}_{\operatorname{seq}(1)^{\oplus} \oplus\left(\delta_{\operatorname{seq}(2)} \otimes \mathrm{m}_{\operatorname{seq}(2)}\right) \oplus \ldots . . \oplus}^{\left(\delta_{\operatorname{seq}(\mathrm{q})} \otimes \mathrm{m}_{\operatorname{seq}(\mathrm{q})}\right)} \\
& \mathrm{m}=\mathrm{m}_{\operatorname{seq}(1) \oplus}^{\oplus} \oplus_{\mathrm{j}=2}^{\mathrm{q}}\left(\delta_{\operatorname{seq}(\mathrm{j})} \otimes \mathrm{m}_{\operatorname{seq}(\mathrm{j})}\right) .
\end{aligned}
$$

Here $\delta_{\text {seq }}(\mathrm{j})$ is the degree of independence of the evidence $m_{s e q}(\mathrm{j})$ from the previous aggregated values. That is $\delta_{\text {seq }}(\mathrm{k})$ is the degree of independence of $m_{s e q(k)}$ from

$$
m_{\operatorname{seq}(1)} \oplus \bigoplus_{\mathrm{j}=2}^{\mathrm{k}-1}\left(\delta_{\operatorname{seq}(\mathrm{j})} \otimes \mathrm{m}_{\operatorname{seq}(\mathrm{j})}\right)
$$

If by convention we denote $\delta_{\text {seq(1) }}=1$ then we can succinctly express this aggregation as

$$
\mathrm{m}=\bigoplus_{\mathrm{j}=1}^{\mathrm{q}}\left(\delta_{\operatorname{seq}(\mathrm{j})} \otimes \mathrm{m}_{\operatorname{seq}(\mathrm{j})}\right)
$$

We note here that if all the pieces of evidence are independent, for all $\mathrm{j} \delta_{\text {seq }}(\mathrm{j})=1$, then we have $\mathrm{m}=\mathrm{m}_{\mathrm{seq}(1)} \oplus \mathrm{m}_{\mathrm{seq}(2)}+\ldots . . \oplus$ $\mathrm{m}_{\text {seq }(\mathrm{q})}$, this is Dempster's rule.

As already noted once when move away from the implicit assumption of independence and allow considerations of dependence we encounter non-commutativity. This introduces considerable complexity. A by-product of this allowance for non-independence will be the requirement that the analyst makes some
subjective choices affecting the aggregation process.

In this environment two questions naturally arise. The first is how do we estimate the degree of independence, the values for $\delta_{\text {seq }}(\mathrm{j})$ used in the preceding formula. The second question is how do we sequence the evidence in the aggregation.

The first question will require a much deeper discussion of what is independence than we are prepared to undertake at this time. The calculation of degree of independence will clearly be context dependent. It would also appear that non-independent evidence should manifest some degree of similarity.

We can make one formal contribution to the problem of determining the values of $\delta_{\text {seq }}(\mathrm{j})$. This is the situation where the calculation of $\delta_{\text {seq(j) }}$ is what we shall call decomposable.

Assume λ is a $\mathrm{q} \times \mathrm{q}$ matrix whose components λ_{ij} indicate the degree of independence between m_{i} and m_{j}. For this matrix we assume $\lambda_{\mathrm{ii}}=0$ and $\lambda_{\mathrm{ik}}=\lambda_{\mathrm{ki}}$, it is symmetric.

If we have such a matrix and assume decomposability we can very effectively obtain the values of $\delta_{\text {seq }}(\mathrm{j})$. In particular we can obtain for $\mathrm{j}>1$

$$
\delta_{\operatorname{seq}(\mathrm{j})}=\underset{\mathrm{M}=1}{\mathrm{j}-1}\left[\bar{\delta}_{\operatorname{seq}(\mathrm{k})} \vee \lambda_{\operatorname{seq}(\mathrm{k}) \operatorname{seq}(\mathrm{j})}\right] .
$$

Here $\bar{\delta}_{\text {seq(k) }}=1-\delta_{\text {seq }}(\mathrm{k})$ and v is the \max operator. We of course assume $\delta_{\text {seq(1) }}=1$.

In the special case where $\lambda_{i j}=1$ for all $j \neq i$ then we see that $\delta_{\text {seq }}(j)=1$ for all j. In this case we have essentially assumed independence and we get Dempster's rule.

At the other extreme is the case where $\lambda_{i j}=$ 0 for all pairs. In this case since $\delta_{\text {seq(1) }}=1$ we have $\delta_{\text {seq }}(\mathrm{j})=0$ for $\mathrm{j} \neq 1$. This is the case of complete dependence. Here we will get as the aggregated value $m=m_{\text {seq }}(1)$.

3. On the Issue of Sequencing

We now turn to the issue of deciding on the sequencing of the evidence to be used in our aggregation. We note that if we have q pieces of evidence there are q ! different ways to sequence the pieces of evidence. Each of these sequencing can lead to a different aggregated value.

At the most fundamental level the task of deciding the sequencing is going to involve some subjective choices by the agent who is ultimately responsible for the result of the fusion. As there is no absolute predetermined rule for deciding how to sequence the evidence, the choice of how to sequence the evidence must be made by the responsible agent in consultation with their information analyst. In the following we look at some features that can be used as a basis to decide on a sequence.

Clearly any features distinguishing the evidences to be aggregated may be useful. Temporal differences between the pieces of evidence may be useful; this may be particularly useful in a dynamic environment where things are changing. Here we may put the more recent evidence earlier in the sequence. Another feature that may be useful is some distinction between the credibility of the sources. Here we may sequence the evidence by perceived credibility. Here the more credible the earlier in the sequence.

Here I distinguish between what I call external and internal features of a piece of evidence. By internal features of a piece of evidence I mean properties associated with the actual evidence itself, essentially the function m and the associated focal elements. By external features I properties related to who supplied the evidence, when it was supplied, the credibility of the supplier. Possible synonyms for external and internal features could be pedigree and content of the evidence. In situations in which we have no external features distinguishing the evidence or we don't believe the ones we have are useful we must turn to internal properties of the evidence to help decide on the sequencing.

One possible way to sequence the evidence is such that the resulting aggregation provides the most information, the greatest certainty regarding the value of the variable. That is using this approach we fuse the information using all the possible q ! sequences and then we select the sequencing that leads to the fused value providing the most information. Central to this type of approach is the ability to compare the information content of the belief structures that result from each sequence. We now turn to this issue.

4. Information Content for Comparing Sequencing

We start the task of developing tools for comparing the information contained in belief structures by looking at the case of the aggregation of two pieces of evidence.

Consider the case where m_{1} and m_{2} are simple support functions focused on the same value y and their degree of independence is λ. Here $\mathrm{m}_{1}(\{\mathrm{y}\})=\mathrm{a}$ and $\mathrm{m}_{1}(\mathrm{X})=1-\mathrm{a}$ while $m_{2}(\{y\})=b$ and $m_{2}(X)=1-b$.
Here we assume $a>b$. If we sequence them as $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2}$ then we get as our aggregated value

$$
\mathrm{m}_{1 / 2}=\mathrm{m}_{1} \oplus\left(\lambda \otimes \mathrm{~m}_{2}\right)=\mathrm{m}_{1} \oplus \mathrm{~m}_{2}
$$

where $\mathrm{m}_{2}(\{\mathrm{y}\})=\lambda \mathrm{b}$ and $\mathrm{m}_{2}(\mathrm{X})=1-\lambda \mathrm{b}$.
Combining m_{1} with m_{2} we get

$$
\begin{aligned}
& m_{1 / 2}(\{y\})=1-(1-a)(1-\lambda b) \\
& m_{1 / 2}(X)=(1-a)(1-\lambda b)
\end{aligned}
$$

Thus $\mathrm{m}_{1 / 2}(\{\mathrm{y}\})=\mathrm{a}+\lambda \mathrm{b} \overline{\mathrm{a}}$. The bigger $m_{1 / 2}(\{y\})$ the more information, we are more certain about the value of the variable.

If we sequence them the other way, $\mathrm{m}_{2} \rightarrow \mathrm{~m}_{1}$, we get $\mathrm{m}_{2 / 1}(\{\mathrm{y}\})=\mathrm{b}+\lambda \mathrm{a} \overline{\mathrm{b}}$. Taking the difference we have

$$
m_{1 / 2}(\{y\})-m_{2 / 1}(\{y\})=(a-b)(1-\lambda) .
$$

We see that with $\mathrm{a}>\mathrm{b}$ then $\mathrm{m}_{1 / 2}(\{\mathrm{y}\})>$ $m_{2 / 1}(\{y\})$. Here to get the most information we sequence them $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2}$, we first take the evidence with the largest support for y.

Consider another case of m_{1} and m_{2} still with λ degree of independence
$\mathrm{m}_{1}(\{\mathrm{y}\})=\mathrm{a}$
$m_{2}(\{y, z\})=a$
$\mathrm{m}_{1}(\mathrm{X})=1-\mathrm{a}$
$\mathrm{m}_{2}(\mathrm{X})=1-\mathrm{a}$
Here it is clear that m_{1} has more information. Combining these in the sequence $\mathrm{m}_{1} \rightarrow \mathrm{~m}_{2}$ we have $\mathrm{m}_{1 / 2}=\mathrm{m}_{1} \oplus\left(\lambda \otimes \mathrm{~m}_{2}\right)$ and we get

$$
\begin{aligned}
& \mathrm{m}_{1 / 2}(\{\mathrm{y}\})=\mathrm{a} \lambda \mathrm{~b}+\mathrm{a}(1-\lambda \mathrm{b})=\mathrm{a} \\
& \mathrm{~m}_{1 / 2}(\{\mathrm{y}, \mathrm{z}\})=\mathrm{a}(\overline{\mathrm{a}} \lambda) \\
& \mathrm{m}_{1 / 2}(\mathrm{X})=(1-\mathrm{a})(1-\lambda \mathrm{a}) .
\end{aligned}
$$

Combining them in the sequence $\mathrm{m}_{2} \rightarrow \mathrm{~m}_{1}$ we have $\mathrm{m}_{2 / 1}=\mathrm{m}_{2} \oplus\left(\lambda \otimes \mathrm{~m}_{1}\right)$ this gives us

$$
\begin{aligned}
& \mathrm{m}_{2 / 1}(\{\mathrm{y}\})=\lambda \mathrm{a}^{2}+(\lambda \mathrm{a})(1-\mathrm{a})=\lambda \mathrm{a} \\
& \mathrm{~m}_{2 / 1}(\{\mathrm{y}, \mathrm{z}\})=\mathrm{a}(1-\lambda \mathrm{a}) \\
& \mathrm{m}_{2 / 1}(\mathrm{X})=(1-\mathrm{a})(1-\lambda \mathrm{a})
\end{aligned}
$$

Since $m_{2 / 1}(X)=m_{1 / 2}(X)$ the difference between $m_{1 / 2}$ and $m_{2 / 1}$ is determined by the weights on $\{y\}$ and $\{y, z\}$. Since $m_{1 / 2}(\{y\}) \geq$
$m_{2 / 1}(\{y\})$ then we see that $m_{1 / 2}$ is more informative.

Consider another case again with degree of independence λ where

$$
\begin{array}{ll}
\mathrm{m}_{1}(\{\mathrm{y}, \mathrm{z}\})=\mathrm{a} & \mathrm{~m}_{2}(\{\mathrm{y}\})=0.5 \mathrm{a} \\
\mathrm{~m}_{1}(\mathrm{X})=\overline{\mathrm{a}} & \mathrm{~m}_{2}(\{\mathrm{z}\})=0.5 \mathrm{a} \\
& \mathrm{~m}_{2}(\mathrm{X})=\overline{\mathrm{a}}
\end{array}
$$

While in this case the determination as to which of m_{1} and m_{2} is more information is not as obvious as in the preceding we can, however, see that m_{2} is more informative as with this piece of evidence the source is sure as how the weight of a is divided between y and z .

For this example we first calculate $\mathrm{m}_{1 / 2}=$ $\mathrm{m}_{1} \oplus\left(\lambda \otimes \mathrm{~m}_{2}\right)$. In this case
$\mathrm{m}_{1 / 2}(\{\mathrm{y}\})=0.5 \mathrm{a} \lambda, \mathrm{m}_{1 / 2}(\{\mathrm{z}\})=0.5 \mathrm{a} \lambda$
$m_{1 / 2}(\{y, z\})=a(1-\lambda a), m_{1 / 2}(X)=\bar{a}(1-$
λ a).
Calculating $\mathrm{m}_{2 / 1}=\mathrm{m}_{2} \oplus\left(\lambda \otimes \mathrm{~m}_{1}\right)$ then we get:
$\mathrm{m}_{2 / 1}(\{\mathrm{y}\})=0.5 \mathrm{a}, \mathrm{m}_{2 / 1}(\{\mathrm{z}\})=0.5 \mathrm{a}$
$\mathrm{m}_{2 / 1}(\{\mathrm{y}, \mathrm{z}\})=\lambda \mathrm{a} \overline{\mathrm{a}}, \mathrm{m}_{2 / 1}(\mathrm{X})=\overline{\mathrm{a}}(1-\lambda \mathrm{a})$.
Since $\mathrm{m}_{2 / 1}(\mathrm{X})=\mathrm{m}_{1 / 2}(\mathrm{X})$ the difference between the two will be determined by the other focal elements. Since $m_{2 / 1}(\{y\})>m_{1 / 2}(\{y\})$ and $m_{2 / 1}(\{z\})>m_{1 / 2}(\{z\})$ then we conclude that $\mathrm{m}_{2 / 1}$ has more information.

Since there are q! ways we can sequence q pieces we must eventually compare these q ! aggregations and decide on the best. In the special case when all the evidences are completely dependent then as we showed $\mathrm{m}=$ $m_{\text {seq(1) }}$. It is the value of the first element in the sequence. In this case there are only q possible first values. Furthermore using the information content of the fused value as our determining factor we would select as the fused value the piece of evidence with the most information. This seems reasonable.

5. Using Range Containment

In the preceding simple examples we were able to indicate which belief structures had more information, less uncertainty, for more complex belief structure we need more sophisticated tools to compare belief structure regarding their information content. Our objective here is to find some algorithm that enables us to determine whether the information content of belief structure m_{1}, $I C\left(m_{1}\right)$ is greater than the
information content of belief structure m_{2}, $\mathrm{IC}\left(\mathrm{m}_{2}\right)$. In the following we begin this task.

One relationship [3] between two belief structures which definitely characterizes a situation in which we clearly know that $\operatorname{IC}\left(\mathrm{m}_{1}\right)$ $>\mathrm{IC}\left(\mathrm{m}_{2}\right)$ is described in the following. Assume m_{1} and m_{2} are two belief structures on X. For any subset of A of X we define $\operatorname{Range}_{1}(\mathrm{~A})=$ $\left[\operatorname{Bel}_{1}(\mathrm{~A}), \mathrm{Pl}_{1}(\mathrm{~A})\right]$ and $\operatorname{Range}_{2}(\mathrm{~A})=\left[\operatorname{Bel}_{2}(\mathrm{~A})\right.$, $\left.\mathrm{Pl}_{2}(\mathrm{~A})\right]$. We say that m_{1} is more informative than m_{2} if for all A we have Range $_{1}(\mathrm{~A}) \subseteq$ Range $_{2}(\mathrm{~A})$ and there exists at least one A such the $\operatorname{Range}_{1}(\mathrm{~A}) \subset \operatorname{Range}_{2}(\mathrm{~A})$. We shall denote this as $\mathrm{m}_{1} \Rightarrow \mathrm{~m}_{2}$. If $\operatorname{Range}_{1}(\mathrm{~A})=\operatorname{Range}_{2}(\mathrm{~A})$ for all A we say m_{1} and m_{2} are equally informative and denote this as $\mathrm{m}_{1} \Leftrightarrow \mathrm{~m}_{2}$.

While the preceding definition correctly captures the idea of m_{1} being more informative than m_{2} it has two problems. One pragmatic problem associated with this definition is the amount of work needed to calculate Range(A) for all subsets of X . The second problem is more formal; the definition is not complete. That is there are belief structures for which neither $\mathrm{m}_{1} \Rightarrow \mathrm{~m}_{2}$ or $\mathrm{m}_{2} \Rightarrow \mathrm{~m}_{1}$ or $\mathrm{m}_{1} \Leftrightarrow \mathrm{~m}_{2}$ is true. Nevertheless, we shall use this as a starting point for the difficult problem of comparing the information content of DempsterShafer belief structures.

Yager [3] provided some tools that can help in the pragmatic issue of comparing belief structures by reducing in some cases the need to calculate Range(A) for all A.
Definition: Assume m_{1} is a belief structure with focal elements A_{i} for $\mathrm{i}=1$ to p where $\mathrm{m}\left(\mathrm{A}_{\mathrm{i}}\right)=\mathrm{a}_{\mathrm{i}}$. Let m_{2} be another belief structure with focal element

$$
\mathrm{B}_{11}, \mathrm{~B}_{12}, \ldots, \mathrm{~B}_{1 \mathrm{n}_{1}}, \mathrm{~B}_{21}, \ldots, \mathrm{~B}_{2 \mathrm{n}_{2}}, \ldots, \mathrm{~B}_{\mathrm{pn}_{\mathrm{P}}}
$$

where $m\left(B_{i j}\right)=b_{i j}$. Furthermore we assume that $\mathrm{A}_{\mathrm{i}} \subseteq \mathrm{B}_{\mathrm{ij}}$ for all $\mathrm{j}=1$ to n_{i} and $\sum_{j=1}^{n_{i}} m\left(B_{i j}\right)=a_{i}$ for $i=1$ to p. In this case we say that m_{1} entails m_{2}, we shall denote this as $\mathrm{m}_{1} \subseteq \mathrm{~m}_{2}$.

Yager [3] showed that if $\mathrm{m}_{1} \subseteq \mathrm{~m}_{2}$ then for all subsets A it is the case that

$$
\left[\mathrm{Bel}_{1}(\mathrm{~A}), \mathrm{Pl}_{1}(\mathrm{~A})\right] \subseteq\left[\operatorname{Bel}_{2}(\mathrm{~A}), \mathrm{Pl}_{2}(\mathrm{~A})\right]
$$

Thus we see that if $\mathrm{m}_{1} \subseteq \mathrm{~m}_{2}$ then $\mathrm{m}_{1} \Rightarrow \mathrm{~m}_{2}$. We note that $\mathrm{m}_{1} \not \subset \mathrm{~m}_{2}$ doesn't mean that m_{1} is not more informative than m_{2}.

In the above situation we turn the problem of determining whether m_{1} is more informative then m_{2} into just comparing the focal elements rather than having to compare the range for all the subsets of A.

A somewhat simplified version of the above condition can be formulated. Assume m is a belief function of X with focal elements A_{1}, \ldots A_{p} with weights $m\left(A_{i}\right)$. We can expand m by replacing any of its focal elements A_{j} with two focal elements D_{1} and D_{2} such that $D_{1}=A_{j}$ and $D_{2}=A_{j}$ where $m\left(D_{1}\right)+m\left(D_{2}\right)=m\left(A_{j}\right)$.

Let m_{1} and m_{2} be two belief structures which can be expanded such that they have the same number of focal elements A_{1}, \ldots, A_{q} and $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{q}}$ such that $\mathrm{A}_{\mathrm{j}} \subseteq \mathrm{B}_{\mathrm{j}}$ and $\mathrm{m}_{1}\left(\mathrm{~A}_{\mathrm{j}}\right)=$ $m_{2}\left(B_{j}\right)$ for all $j=1$ to q. In this we can show that for any subset A it is the case that

$$
\left[\mathrm{Bel}_{1}(\mathrm{~A}), \mathrm{Pl}_{1}(\mathrm{~A})\right] \subseteq\left[\mathrm{Bel}_{2}(\mathrm{~A}), \mathrm{Pl}_{2}(\mathrm{~A})\right]
$$

6. Indifference to Indexing

Our paradigm of using range containment for comparing information content of belief structures can be further enhanced. In particular it can be made indifferent to the indexing. Consider two belief structures m_{1} and m_{2} defined on X where

$$
\begin{array}{ll}
\mathrm{m}_{1}\left(\left\{\mathrm{x}_{1}\right\}\right)=\mathrm{a} & \mathrm{~m}_{2}\left(\left\{\mathrm{x}_{2}\right\}\right)=\mathrm{a} \\
\mathrm{~m}_{1}(\mathrm{X})=1-\mathrm{a} & \mathrm{~m}_{2}(\mathrm{X})=1-\mathrm{a}
\end{array}
$$

What should be clear is that these two belief structures are equally informative.

Perhaps a more intuitive manifestation is there would be the case where m_{1} and m_{2} are Bayesian. For example m_{1} is such that $m_{1}\left(x_{1}\right)$ $=0.1, \mathrm{~m}_{1}\left(\mathrm{x}_{2}\right)=0.2, \mathrm{~m}_{1}\left(\mathrm{x}_{3}\right)=0.3, \mathrm{~m}_{1}\left(\mathrm{x}_{4}\right)=0.4$ and m_{2} such that $\mathrm{m}_{2}\left(\mathrm{x}_{4}\right)=0.1, \mathrm{~m}_{2}\left(\mathrm{x}_{3}\right)=0.2$, $m\left(x_{2}\right)=0.3, m\left(x_{1}\right)=0.4$. It is clear the uncertainty in both cases is the same.

Essentially we observe any procedure for comparing the information content of belief structures should be indifferent to the indexing. In the following we generalize this observation. First we introduce the idea of a replica.

Let $R: X \rightarrow X$ be a bijective mapping, it is one to one and onto. Essentially R re-indexes
the elements in X, R is sometimes called a permutation. If A is a subset of X by $R(A)$ we shall mean a subset of X in which the elements of A have been re-indexed according to R. Thus if $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and R is such that: $R\left(x_{1}\right)$ $=x_{3}, R\left(x_{2}\right)=x_{4}, R\left(x_{3}\right)=x_{1}$ and $R\left(x_{4}\right)=x_{2}$ then if $A=\left\{x_{1}, x_{2}\right\}$ we have $R(A)=\left\{x_{3}, x_{4}\right\}$. We note that the cardinality of $R(A)$ is always the same as A .

Let m be a belief structure on X with focal element $\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots . ., \mathrm{B}_{\mathrm{q}}$ and weights $\mathrm{m}\left(\mathrm{B}_{\mathrm{j}}\right)$. Let R be a re-indexing function on X. By $R(m)$ we shall mean a new belief structure \tilde{m} with q focal elements $A_{j}=R\left(B_{j}\right)$ and where $\tilde{m}\left(A_{j}\right)=$ $m\left(B_{j}\right)$. Thus here we have just re-indexed everything. We shall call \tilde{m} a replica of m.

We note that a special replica of m is the identity, here $R\left(x_{i}\right)=x_{i}$.

In the following we use the idea to replica to provide a general characterization of information content of a belief structure.

Let PIC be some procedure or rule for comparing the information content of two belief structures such that its application to any two belief structures m_{1} and $\mathrm{m}_{2}, \mathbf{P I C}\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right)$, returns one of four states:
a) $\operatorname{PIC}\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right) \Rightarrow \operatorname{IC}\left(\mathrm{m}_{1}\right)>\operatorname{IC}\left(\mathrm{m}_{2}\right)\left(\mathrm{m}_{1}\right.$ is more informative)
b) $\operatorname{PIC}\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right) \Rightarrow \operatorname{IC}\left(\mathrm{m}_{2}\right)>\operatorname{IC}\left(\mathrm{m}_{1}\right)\left(\mathrm{m}_{2}\right.$ is more informative)
c) $\operatorname{PIC}\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right) \Rightarrow \operatorname{IC}\left(\mathrm{m}_{1}\right)=\operatorname{IC}\left(\mathrm{m}_{2}\right)\left(\mathrm{m}_{1}\right.$ and m_{2} equally informative)
d) $\operatorname{PIC}\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right) \Rightarrow \operatorname{IC}\left(\mathrm{m}_{1}\right)<>\operatorname{IC}\left(\mathrm{m}_{2}\right)\left(\mathrm{m}_{1}\right.$ and m_{2} are incomparable)
A required property for PIC to be a valid procedure for comparing belief structures is that it be replica indifferent a property we define in the following. Let \mathcal{R} be the set of all reindexing procedure on X. Let $\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right)$ be any arbitrary pair of re-indexing procedures, R_{1} and $\mathrm{R}_{2} \in \mathcal{R}$. Then replica indifference requires all $\mathbf{P I C}\left(\mathrm{R}_{1}\left(\mathrm{~m}_{1}\right), \mathrm{R}_{2}\left(\mathrm{~m}_{2}\right)\right)$ that do not evaluate to incomparable, \rangle, must evaluate to the same ($>,<$, or $=$). Thus if there exists a pair R_{1} and R_{2} such that $\mathbf{P I C}\left(\mathrm{R}_{1}\left(\mathrm{~m}_{1}\right), \mathrm{R}_{2}\left(\mathrm{~m}_{2}\right)\right)$ evaluates to $\operatorname{IC}\left(\mathrm{R}_{2}\left(\mathrm{~m}_{2}\right)\right)>\operatorname{IC}\left(\mathrm{R}_{1}\left(\mathrm{~m}_{1}\right)\right)$ then for any other pair R_{3} and R_{4} it must be the case that $\mathbf{P I C}\left(\mathrm{R}_{3}\left(\mathrm{~m}_{1}\right), \quad \mathrm{R}_{4}\left(\mathrm{~m}_{2}\right)\right) \quad$ evaluates to
$\operatorname{IC}\left(\mathrm{R}_{4}\left(\mathrm{~m}_{2}\right)\right)>\operatorname{IC}\left(\mathrm{R}_{3}\left(\mathrm{~m}_{1}\right)\right)$
or
$\operatorname{IC}\left(\mathrm{R}_{4}\left(\mathrm{~m}_{2}\right)\right)<>\operatorname{IC}\left(\mathrm{R}_{3}\left(\mathrm{~m}_{1}\right)\right)$. Thus all pairs of replicas that are not incomparable evaluate to the same value in the set $\{>,<,=\}$.

The procedure suggested earlier for comparing the informativeness of m_{1} and m_{2} using the containment of ranges of subsets, Range $_{1}(\mathrm{~A}) \subseteq$ Range $_{2}(\mathrm{~A})$, is replica indifferent. Replica indifference enhances the usefulness of this procedure for comparing belief structures. In particular if m_{1} and m_{2} are two belief structures and there exists a replica of $m_{2}, m_{3}=$ $R\left(m_{2}\right)$ such that for all subset A we have Range $_{1}(\mathrm{~A}) \subseteq$ Range $_{3}(\mathrm{~A})$ then m_{1} is more informative then m_{2}.

7. Protoforms for Determining IC Relationship

The combination of replica indifference with the entailment rule provides some very basic protoforms for determining the IC relationship. We first consider the comparison of common classes of belief structure.

Let m_{1} be a belief structure so that $\mathrm{m}_{1}(B)=$ 1 where B is some subset of X of cardinality k. For simplicity let $B=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$. Let m_{2} be a Bayesian belief structure with k focal elements

$$
A_{1}=\left\{x_{1}\right\}, A_{2}=\left\{x_{2}\right\}, \ldots \ldots \ldots . ., A_{k}=\left\{x_{k}\right\}
$$

where $m_{2}\left(A_{j}\right)=p_{j}$. We note that for $x_{j} \notin B$ we have $p_{i}=0$.

We now introduce an expanded version of m_{1}, \tilde{m}_{1} with k focal elements $B_{j}=B, j=1$ to k, where $\tilde{m}_{1}\left(B_{j}\right)=m_{2}\left(A_{j}\right)=p_{j}$. What we observe now is that the relationship between $\tilde{\mathrm{m}}_{1}$ and m_{2} is such that they both have k focal elements, A_{1}, $\ldots, \mathrm{A}_{\mathrm{k}}$ and $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{k}}$ with the same weights but $\mathrm{A}_{\mathrm{j}} \subseteq \mathrm{B}_{\mathrm{j}} \quad$ Thus using our previous result about this situation we can conclude that m_{2} has more information that $\mathrm{m}_{1}, \operatorname{IC}\left(\mathrm{~m}_{2}\right)>\operatorname{IC}\left(\mathrm{m}_{1}\right)$.

Some interesting special cases of the following are worth noting. One special case is where $p_{j}=\frac{1}{k}$ for $x_{j} \in B$. Thus we see that a belief structure m_{1} with $\mathrm{m}_{1}(\mathrm{~B})=1$ is less informative then a Bayesian one in which $p_{j}=$ $\frac{1}{\mathrm{k}}$ for $\mathrm{j}=1$ to k . Consider the case where $\mathrm{B}=$
$\mathrm{X}, \mathrm{m}_{1}$ is the vacuous belief structure, m_{V}. We have shown that the belief structure where $\mathrm{p}_{\mathrm{i}}=$ $\frac{1}{\mathrm{n}}$ for all $\mathrm{x}_{\mathrm{i}} \in \mathrm{X}$ has more information. This makes sense, since in the vacuous case we have no information.

In the preceding we have shown that if m_{1} has $m_{1}(B)=1$ then m_{2} with focal elements $A_{j}=\left\{x_{j}\right\}$ for $x_{j} \in B$ with $m_{2}\left(A_{j}\right)=p_{j}$ has more information than m_{1}. There is no reasoning why some of p_{j} can't be zero. From this we can conclude the following. Let m_{1} be a belief structure with $\mathrm{m}_{1}(\mathrm{~B})=1$. Let m_{2} be a belief structure with $r \leq|B|$ singleton focal elements, $A_{i}=\left\{x_{i}\right\}$ and $x_{i} \in B$. Essentially m_{2} is a kind of Bayesian structure. In this case m_{2} must be more informative than m_{1}.

Our requirement that the information comparison measure should be indifferent to indexing, the use of replicas, allows us to state the following theorem:
Theorem: Assume m_{1} is a belief structure with $\mathrm{m}_{1}(\mathrm{~B})=1$. Let m_{2} be a belief structure with q singleton focal elements if $\mathrm{q} \leq \mid \mathrm{BI}$ then $\mathrm{IC}\left(\mathrm{m}_{2}\right)$ $>\mathrm{IC}\left(\mathrm{m}_{1}\right)$.

We emphasize here that it is not necessary for the elements in B to be the same as those in the focal elements of m_{2}.

Actually we can provide an even more general result using the idea replica.
Theorem: Let m_{1} be a belief with $\mathrm{m}(\mathrm{B})=1$. Let m_{2} be a belief structure with q focal elements, A_{j} for $j=1$ to q and $m_{2}\left(A_{j}\right)$ the associated weights. Let $A=\bigcup_{i=1}^{q} A_{i}$, all the elements that appear in the focal sets of m_{2}. Then if $|A| \leq|B|$ we have $\mathrm{IC}\left(\mathrm{m}_{2}\right)>\mathrm{IC}\left(\mathrm{m}_{1}\right)$.
Proof: Using the idea of replicas we can determine a replica \tilde{m} of m_{1} using a mapping R such that for each $x_{j} \in A$ there exists a $x_{i} \in B$ such that $R\left(x_{j}\right)=x_{j}$. Once having this replica \tilde{m} with $R(B)=\tilde{B}$ then since $A_{i} \subset \tilde{B}$ the result follows.

Another interesting special situation is the following. Assume m_{1} and m_{2} are simple support functions where

$$
m_{1}(A)=\alpha
$$

$$
\mathrm{m}_{2}(\mathrm{~B})=\beta
$$

$$
m_{1}(X)=(1-\alpha) \quad m_{2}(X)=(1-\beta)
$$

Assume $\alpha \geq \beta$ and $|\mathrm{A}| \leq|\mathrm{B}|$ then $\operatorname{IC}\left(\mathrm{m}_{1}\right)>$ $\mathrm{IC}\left(\mathrm{m}_{2}\right)$.

We see this as follows. Assume \tilde{m}_{2} is a replica of m_{2} based on a mapping R such that for each $x_{i} \in A$ there exists a $x_{j} \in B$ for where $R\left(x_{j}\right)=x_{i}$. In this case $R(B)=\tilde{B} \supset A$. In this case we have $\tilde{m}_{2}(\tilde{B})=\beta$ and $\tilde{m}_{2}(X)=(1-\beta)$. We can now expand m_{1} an \tilde{m}_{2}
$m_{1}\left(\mathrm{~A}_{1}\right)=\beta$
$\tilde{m}_{2}\left(B_{1}\right)=\beta$
$m_{1}\left(A_{2}\right)=\alpha-\beta$
$\tilde{m}_{2}\left(B_{2}\right)=\alpha-\beta$
$\mathrm{m}_{1}(\mathrm{X})=(1-\alpha)$
$\tilde{m}_{2}(\mathrm{X})=(1-\alpha)$
where $A_{1}=A_{2}=A$ and $B_{1}=\tilde{B}$ and $B_{2}=X$. It is clear in this case that $\mathrm{A}_{\mathrm{j}} \subseteq \mathrm{B}_{\mathrm{j}}$ and hence $\operatorname{IC}\left(\mathrm{m}_{1}\right)>\operatorname{IC}\left(\tilde{\mathrm{m}}_{2}\right)$ and hence $\mathrm{IC}\left(\mathrm{m}_{1}\right)>$ $\mathrm{IC}\left(\mathrm{m}_{2}\right)$.

Another interesting special case is the following. Assume m_{1} and m_{2} are such that

$$
\begin{array}{ll}
m_{1}(A)=\alpha & m_{2}(B)=\alpha \\
m_{2}(\bar{A})=1-\alpha & m(X)=1-\alpha
\end{array}
$$

where $|\mathrm{A}| \leq|\mathrm{B}|$. In this case $\operatorname{IC}\left(\mathrm{m}_{1}\right) \geq \operatorname{IC}\left(\mathrm{m}_{2}\right)$.

8. Entropy and Specificity to Compare Belief Structures

While the use of the containment procedure for comparing the information contents of belief structures has been greatly extended it still can often result in incomparability between belief structures. A very basic example of this occurs when we have Bayesian belief structures as shown below. Consider the case where $\mathrm{X}=$ $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}\right\}$ and m_{1} and m_{2} are as described below

$$
\begin{array}{ll}
\mathrm{m}_{1}\left(\left\{\mathrm{x}_{1}\right\}\right)=0.9 & \mathrm{~m}_{2}\left(\left\{\mathrm{x}_{1}\right\}\right)=0.5 \\
\mathrm{~m}_{1}\left(\left\{\mathrm{x}_{2}\right\}\right)=0.1 & \mathrm{~m}_{2}\left(\left\{\mathrm{x}_{2}\right\}\right)=0.5
\end{array}
$$

In this case $\operatorname{Range}_{1}\left(\left\{\mathrm{x}_{1}\right\}\right)=[0.9,0.9]$ and $\operatorname{Range}_{1}\left(\left\{\mathrm{x}_{2}\right\}\right)=[0.1,0.1]$ while Range $2\left(\left\{\mathrm{x}_{1}\right\}\right)=$ $[0.5,0.5]$ and Range $2\left(\left\{x_{2}\right\}\right)=[0.5,0.5]$. While these intervals are incomparable it is clear that m_{1} has less uncertainty than m_{2}. Thus we need further tools and procedures to help with the comparison of the information content of belief structures.

Earlier we introduced two measures to calculate the uncertainty associated with a Dempster-Shafer belief structure [4]. We recall if m is a belief structure with focal elements B_{1},
$\ldots, \mathrm{B}_{\mathrm{q}}$ then the specificity of m is defined as $S_{P}(m)=1-\frac{1}{n-1} \sum_{j=1}^{q} m\left(B_{j}\right)\left(\left|B_{j}\right|-1\right)$ and the entropy of m is defined as

$$
\mathrm{H}(\mathrm{~m})=-\sum_{\mathrm{j}=1}^{\mathrm{q}} \mathrm{~m}\left(\mathrm{~B}_{\mathrm{j}}\right) \ln \left[\mathrm{Pl}\left(\mathrm{~B}_{\mathrm{j}}\right)\right]
$$

We now explore using these to help formulate a procedure for comparing the information content of belief structures. We first observe that these measures are replica indifferent. Thus if $\tilde{m}=R(m)$ is a replica of m then $\operatorname{Sp}(\mathrm{m})=\operatorname{Sp}(\tilde{\mathrm{m}})$ and $\mathrm{H}(\mathrm{m})=\mathrm{H}(\tilde{\mathrm{m}})$. This feature makes these two measures desirable for building procedures for comparing information content.

We further observe that $\operatorname{Sp}(\mathrm{m})=[0,1]$ where the larger $\operatorname{Sp}(\mathrm{m})$ is associated with more information, less uncertainty. For $H(m)$ we have shown that $\mathrm{H}(\mathrm{m}) \in[0, \ln (\mathrm{n})]$, however, here the larger $\mathrm{H}(\mathrm{m})$ the less information, the more uncertainty. In the following we shall find it more convenient to use a normalized version of $H(m)$ which is $G(m)=1-\frac{H(m)}{\ln (n)}$. In this case $G(m) \in[0,1]$ and the larger $G(m)$ the more information, the less uncertainty.

We now shall suggest an additional procedure for comparing the information content of belief structures based on the use of the two measures $\mathrm{Sp}(\mathrm{m})$ and $\mathrm{G}(\mathrm{m})$. We denote this PIC_2 and described in the following

Assume m_{1} and m_{2} are two belief structures we shall say that $\operatorname{IC}\left(m_{1}\right)>\operatorname{IC}\left(m_{2}\right)$ if

$$
\begin{gathered}
S p\left(m_{1}\right) \geq S p\left(m_{2}\right) \text { and } G\left(m_{1}\right) \geq G\left(m_{2}\right) \text { and at } \\
\text { least one of the } \geq \text { is an }>.
\end{gathered}
$$

Let us look at this procedure for comparing information content.

Consider the case where m_{1} and m_{2} are Bayesian belief structures. As we have previously show for any Bayesian belief structure the specificity is one, thus $\operatorname{Sp}\left(\mathrm{m}_{1}\right)=$ $\operatorname{Sp}\left(\mathrm{m}_{2}\right)=1$. Thus the only difference between Bayesian belief structures is their $G(m)$ value. Since the larger $G(m)$ the smaller the entropy this appropriately distinguishes between Bayesian belief structures based on the comparison of the entropy. The smaller the entropy the larger the information conflict, thus if $\mathrm{G}\left(\mathrm{m}_{1}\right)>\mathrm{G}\left(\mathrm{m}_{2}\right)$ then $\mathrm{IC}\left(\mathrm{m}_{1}\right)>\mathrm{IC}\left(\mathrm{m}_{2}\right)$.

Consider now the belief structure where $m(B)=1$. In this case $G(m)=1$ independent of B while $\operatorname{Sp}(\mathrm{m})=1-\frac{|\mathrm{B}|-1}{\mathrm{n}-1}=\frac{\mathrm{n}-|\mathrm{B}|}{\mathrm{n}-1}$ Thus the smaller B the larger the specificity. Here again the monotonicity will allow us to point to the belief structure with the smaller B as the more informative.

We now consider a situation we introduced earlier in which m_{1} and m_{2} are two belief structures with the same number of focal sets, $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{q}}$ and B_{1}, \ldots, and B_{q} where $\mathrm{m}_{1}\left(\mathrm{~A}_{\mathrm{j}}\right)=\mathrm{m}_{2}\left(\mathrm{~B}_{\mathrm{j}}\right)$ and $\mathrm{A}_{\mathrm{j}} \subseteq \mathrm{B}_{\mathrm{j}}$ for all j and $\mathrm{A}_{\mathrm{j}} \subset$ B_{j} for at least one j. In the preceding we showed that here we conclude that m_{1} is more informative than m_{2}. Let us look to see if our approach using $\mathrm{Sp}(\mathrm{m})$ and $\mathrm{G}(\mathrm{m})$ can capture this. First we note that
$\operatorname{Sp}\left(m_{1}\right)=\sum_{j=1}^{q} m\left(A_{j}\right) \operatorname{Sp}\left(A_{j}\right)>\sum_{j=1}^{q} m\left(B_{j}\right) \operatorname{Sp}\left(B_{j}\right)$
$\operatorname{Sp}\left(\mathrm{m}_{1}\right)>\operatorname{Sp}\left(\mathrm{m}_{2}\right)$.
Thus, m_{1} is more specific. Consider the calculation of $\mathrm{H}(\mathrm{m})$. Here we have
$H\left(m_{1}\right)=-\sum_{j=1}^{q} m\left(A_{j}\right) \ln \left(P l\left(A_{j}\right)\right)$
$H\left(m_{1}\right)=\sum_{j=1}^{q} m\left(A_{j}\right) \ln \left(1-\sum_{\substack{i \\ A_{i} \cap A_{j}=\varnothing}} m\left(A_{i}\right)\right)$
$H\left(m_{2}\right)=-\sum_{j=1}^{q} m\left(B_{j}\right) \ln \left(P l\left(B_{j}\right)\right)$
$H\left(m_{2}\right)=\sum_{j=1}^{q} m\left(B_{j}\right) \ln \left(1-\sum_{\substack{i \\ B_{i} \cap B_{j}=\varnothing}} m\left(B_{i}\right)\right)$.
Since $m\left(B_{j}\right)=m\left(A_{j}\right)$ the difference will depend only on the terms $\sum_{\substack{i \\ A_{i} \cap A_{j}=\varnothing}} m\left(A_{i}\right)$
and $\sum_{\substack{i \\ B_{i} \cap B_{j}=\varnothing}} m\left(B_{i}\right)$. Since $A_{i} \subseteq B_{i}$ for all i
then it follows $H\left(m_{1}\right) \leq H\left(m_{2}\right)$ and hence $G\left(m_{1}\right) \geq G\left(m_{2}\right)$. Thus here since $S p\left(m_{1}\right)>$ $\operatorname{Sp}\left(m_{2}\right)$ and $G\left(m_{1}\right) \geq G\left(m_{2}\right)$ we see that m_{1} is more informative than m_{2}.

9. On the Use of Information Content

In the preceding what became clear was that when we allow for the aggregation of nonindependent belief structures the aggregation is non-commutative. The resulting fused value depends on the sequencing (ordering) of the beliefs structures in the aggregation. We suggested one way to address this problem is to use the sequence that results in a fused value that provides the most information, least uncertainty.

In order to implement this approach we needed an algorithm to be able to compare two belief structures m_{1} and m_{2} and tell which is more informative. In the preceding we suggested two algorithms. The first PIC_1 was based on containment of ranges. The second PIC_2 is based on based on comparing the specificity and entropy of belief structures.

If neither of these two methods allows us to choose one of the belief structures, they are incomparable under PIC_1 and PIC_2, we may try to use a less absolute method for comparing the information in belief structures. Essentially in this case we may only try to find out if $\operatorname{IC}\left(\mathrm{m}_{1}\right)$ is "better than" $\operatorname{IC}\left(\mathrm{m}_{2}\right)$. Here the concept "better then" is somewhat subjective. At this point we shall not pursue this only to make some comments. One possibility here is obtain some monotonic function $\mathrm{F}(\mathrm{Sp}(\mathrm{m})$, $G(\mathrm{~m})$) and say m_{1} is better than m_{2}, if $F\left(S p\left(m_{1}\right), G\left(m_{1}\right)>F\left(S p\left(m_{2}\right), G\left(m_{2}\right)\right)\right.$. We note that Klir [5] and Abellan and Moral [6, 7] investigated functions of this nature..

Our focus in determining the sequencing of non-independent belief structures has been to use the sequence that results in the most informative fused value. In following this approach we are faced with some pragmatic problems. In addition to the possibility of incomparability discussed above this approach can at times involve considerable computational complexity. In particular q pieces evidence require the investigation of q ! sequences, a task that can lead to a lot of work. Another option, which avoids this complexity, is to sequence the belief structures directly in terms of their information contents. Thus if we have q belief structures we would use as our sequencing Seq such that $\operatorname{Seq}(\mathrm{j})$ is the belief structure with if $\mathrm{j}^{\text {th }}$ largest amount of information. Here we still have the possibility of incomparability. This
problem, however, may somewhat be reduced by the fact that the atomic belief structures may be simple and hence easy to compare.

10. Conclusion

We reviewed some aspects of the DempsterShafer theory of evidence. We suggested an approach to the aggregation of non-independent belief structures. This approach made use of a weighted aggregation of the belief structures where the weights are related to the degree of dependence. It was shown that this aggregation is non-commutative, the fused value depends on the sequencing of the evidences. We then considered the problem of how best to sequence the evidence. We investigated using the measure of information content of the fused value as a method for selecting the appropriate way to sequence the belief structures.

References

[1] Yager, R. R. and Liu, L., (A. P. Dempster and G.Shafer, Advisory Editors), (2008) Classic Works of the Dempster-Shafer Theory of Belief Functions (Springer: Heidelberg).
[2] Shafer, G., 1976, A Mathematical Theory of Evidence (Princeton University Press: Princeton, N.J.).
[3] Yager, R. R., 1986b, The entailment principle for Dempster-Shafer granules. Int. J. of Intelligent Systems 1, pp. 247-262.
[4] Yager, R. R., 1983, Entropy and specificity in a mathematical theory of evidence. Int. J. of General Systems 9, pp. 249-260.
[5] Klir, G. J., 2006, Uncertainty and Information. (John Wiley \& Sons: New York).
[6] Abellan, J. and Moral, S., 1999, Completing a total uncertainty measure in the Dempster-Shafer theory. International Journal of General Systems 28, pp. 299-314.
[7] Abellan, J. and Moral, S., 2003, Maximum entropy for credal sets. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 11, pp. 587-597.

