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Abstract

The Reference Point Method (RPM)
is based on the so-called aug-
mented max-min aggregation where
the worst individual achievement
maximization process is addition-
ally regularized with the average
achievement. The regularization by
the average achievement is easily
implementable but it may disturb
the basic max-min model. The
OWA regularization applied to the
RPM allows one to overcome this
flaw since taking into account dif-
ferences among all ordered achieve-
ment values. Further, allowing to in-
troduce importance weights we get
the WOWA enhanced RPM. The
WOWA regularization is more com-
plicated in implementation but the
recent progress made in optimiza-
tion methods for ordered averages
allows one to implement the corre-
sponding RPM method effectively.

Keywords: Multicriteria Decision
Making, Aggregation Methods, Ref-
erence Point Method, WOWA.

1 Introduction

Consider a decision problem defined as an op-
timization problem with m criteria (objective
functions). In this paper, without loss of gen-
erality, it is assumed that all the criteria are
maximized (that is, for each outcome ‘more

is better’). Hence, we consider the following
multiple criteria optimization problem:

max { (f1(x), . . . , fm(x)) : x ∈ Q } (1)

where x denotes a vector of decision variables
to be selected within the feasible set Q ⊂ Rn,
and f(x) = (f1(x), f2(x), . . . , fm(x)) is a vec-
tor function that maps the feasible set Q into
the criterion space Rm. Note that neither any
specific form of the feasible set Q is assumed
nor any special form of criteria fi(x) is re-
quired. We refer to the elements of the crite-
rion space as outcome vectors. An outcome
vector y is attainable if it expresses outcomes
of a feasible solution, i.e. y = f(x) for some
x ∈ Q.

Model (1) only specifies that we are interested
in maximization of all objective functions fi

for i ∈ I = {1, 2, . . . ,m}. Thus it allows
only to identify (to eliminate) obviously in-
efficient solutions leading to dominated out-
come vectors, while still leaving the entire effi-
cient set to look for a satisfactory compromise
solution. In order to make the multiple cri-
teria model operational for the decision sup-
port process, one needs assume some solution
concept well adjusted to the DM preferences.
This can be achieved with the so-called quasi-
satisficing approach to multiple criteria deci-
sion problems. The best formalization of the
quasi-satisficing approach to multiple crite-
ria optimization was proposed and developed
mainly by Wierzbicki [12] as the Reference
Point Method (RPM). The reference point
method was later extended to permit addi-
tional information from the DM and, even-
tually, led to efficient implementations of the
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so-called Aspiration/Reservation Based Deci-
sion Support (ARBDS) approach with many
successful applications [1, 13].

The RPM is an interactive technique. The
basic concept of the interactive scheme is as
follows. The DM specifies requirements in
terms of reference levels, i.e., by introducing
reference (target) values for several individual
outcomes. Depending on the specified refer-
ence levels, a special scalarizing achievement
function is built which may be directly inter-
preted as expressing utility to be maximized.
Maximization of the scalarizing achievement
function generates an efficient solution to the
multiple criteria problem. The computed ef-
ficient solution is presented to the DM as the
current solution in a form that allows compar-
ison with the previous ones and modification
of the reference levels if necessary.

The scalarizing achievement function can be
viewed as two-stage transformation of the
original outcomes. First, the strictly mono-
tonic partial achievement functions are built
to measure individual performance with re-
spect to given reference levels. Having all the
outcomes transformed into a uniform scale of
individual achievements they are aggregated
at the second stage to form a unique scalariza-
tion. The RPM is based on the so-called aug-
mented (or regularized) max-min aggregation.
Thus, the worst individual achievement is es-
sentially maximized but the optimization pro-
cess is additionally regularized with the term
representing the average achievement. The
max-min aggregation guarantees fair treat-
ment of all individual achievements by im-
plementing an approximation to the Rawlsian
principle of justice.

The max-min aggregation is crucial for allow-
ing the RPM to generate all efficient solutions
even for nonconvex (and particularly discrete)
problems. On the other hand, the regulariza-
tion is necessary to guarantee that only effi-
cient solution are generated. The regulariza-
tion by the average achievement is easily im-
plementable but it may disturb the basic max-
min model. Actually, the only consequent reg-
ularization of the max-min aggregation is the
lex-min order or more practical the OWA ag-

gregation with monotonic weights. The latter
combines all the partial achievements allocat-
ing the largest weight to the worst achieve-
ment, the second largest weight to the second
worst achievement, the third largest weight to
the third worst achievement, and so on. The
recent progress in optimization methods for
ordered averages [7] allows one to implement
the OWA RPM quite effectively. Further fol-
lowing the concept of Weighted OWA [11] the
importance weighting of several achievements
may be incorporated into the RPM. Such a
WOWA enhancement of the RPM uses im-
portance weights to affect achievement im-
portance by rescaling accordingly its measure
within the distribution of achievements rather
than straightforward rescaling of achievement
values [10]. The paper analyzes both the
theoretical and implementation issues of the
WOWA enhanced RPM.

2 Scalarizations of the RPM

While building the scalarizing achievement
function the following properties of the pref-
erence model are assumed. First of all, for
any individual outcome yi more is preferred
to less (maximization). To meet this require-
ment the function must be strictly increas-
ing with respect to each outcome. Second, a
solution with all individual outcomes yi sat-
isfying the corresponding reference levels is
preferred to any solution with at least one
individual outcome worse (smaller) than its
reference level. That means, the scalarizing
achievement function maximization must en-
force reaching the reference levels prior to fur-
ther improving of criteria. Thus, similar to
the goal programming approaches, the refer-
ence levels are treated as the targets but fol-
lowing the quasi-satisficing approach they are
interpreted consistently with basic concepts
of efficiency in the sense that the optimiza-
tion is continued even when the target point
has been reached already.

The generic scalarizing achievement function
takes the following form [12]:

S(y) = min
1≤i≤m

{si(yi)}+
ε

m

m∑
i=1

si(yi) (2)
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where ε is an arbitrary small positive number
and si : R → R, for i = 1, 2, . . . ,m, are the
partial achievement functions measuring ac-
tual achievement of the individual outcomes
yi with respect to the corresponding refer-
ence levels. Let ai denote the partial achieve-
ment for the ith outcome (ai = si(yi)) and
a = (a1, a2, . . . , am) represent the achieve-
ment vector. The scalarizing achievement
function (2) is, essentially, defined by the
worst partial (individual) achievement but ad-
ditionally regularized with the sum of all par-
tial achievements. The regularization term is
introduced only to guarantee the solution ef-
ficiency in the case when the maximization
of the main term (the worst partial achieve-
ment) results in a non-unique optimal solu-
tion. Due to combining two terms with arbi-
trarily small parameter ε, formula (2) is easily
implementable and it provides a direct inter-
pretation of the scalarizing achievement func-
tion as expressing utility.

Various functions si provide a wide modeling
environment for measuring partial achieve-
ments [13]. The basic RPM model is based
on a single vector of the reference levels, the
aspiration vector ra and the piecewise linear
functions si.

Real-life applications of the RPM methodol-
ogy usually deal with more complex partial
achievement functions defined with more than
one reference point [13] which enriches the
preference models and simplifies the interac-
tive analysis. In particular, the models tak-
ing advantages of two reference vectors: vec-
tor of aspiration levels ra and vector of reser-
vation levels rr [1] are used, thus allowing
the DM to specify requirements by introduc-
ing acceptable and required values for several
outcomes. The partial achievement function
si can be interpreted then as a measure of
the DM’s satisfaction with the current value
of outcome the ith criterion. It is a strictly
increasing function of outcome yi with value
ai = 1 if yi = ra

i , and ai = 0 for yi = rr
i .

Thus the partial achievement functions map
the outcomes values onto a normalized scale
of the DM’s satisfaction. Various functions
can be built meeting those requirements. We

use the piece-wise linear partial achievement
function introduced in an implementation of
the ARBDS system for the multiple criteria
transshipment problems with facility location
[5]:

si(yi) =



γ
yi − rr

i

ra
i − rr

i

, yi ≤ rr
i

yi − rr
i

ra
i − rr

i

, rr
i < yi < ra

i

α
yi − ra

i

ra
i − rr

i

+ 1, yi ≥ ra
i

(3)

where α and γ are arbitrarily defined param-
eters satisfying 0 < α < 1 < γ. Parameter
α represents additional increase of the DM’s
satisfaction over level 1 when a criterion gen-
erates outcomes better than the correspond-
ing aspiration level. On the other hand, pa-
rameter γ > 1 represents dissatisfaction con-
nected with outcomes worse than the reserva-
tion level.

-

6
1

si

yirr
i ra

i

Figure 1: Partial achievement function (3)

For outcomes between the reservation and
the aspiration levels, the partial achievement
function si can be interpreted as a member-
ship function µi for a fuzzy target. However,
such a membership function remains constant
with value 1 for all outcomes greater than
the corresponding aspiration level, and with
value 0 for all outcomes below the reservation
level (Fig. 1). Hence, the fuzzy membership
function is neither strictly monotonic nor con-
cave thus not representing typical utility for a
maximized outcome. The partial achievement
function (3) can be viewed as an extension of
the fuzzy membership function to a strictly
monotonic and concave utility.
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3 OWA refinement of the RPM

The crucial properties of the RPM are re-
lated to the max-min aggregation of par-
tial achievements while the regularization is
only introduced to guarantee the aggrega-
tion monotonicity. Unfortunately, the distri-
bution of achievements may make the max-
min criterion partially passive when one spe-
cific achievement is relatively very small for
all the solutions. Maximization of the worst
achievement may then leave all other achieve-
ments unoptimized. Nevertheless, the selec-
tion is then made according to linear aggre-
gation of the regularization term instead of
the max-min aggregation, thus destroying the
preference model of the RPM. This can be
illustrated with an example of a simple dis-
crete problem of 7 alternative feasible solu-
tions to be selected according to 6 criteria.
Table 1 presents six partial achievements for
all the solutions where the partial achieve-
ments have been defined according to the as-
piration/reservation model (3) thus allocat-
ing 1 to outcomes reaching the correspond-
ing aspiration level. All the solutions are ef-
ficient. Solution S1 to S5 oversteps the as-
piration levels (achievement values 1.2) for
four of the first five criteria while failing to
reach one of them and the aspiration level for
the sixth criterion as well (achievement values
0.3). Solution S6 meets the aspiration levels
(achievement values 1.0) for the first five cri-
teria while while failing to reach only the as-
piration level for the sixth criterion (achieve-
ment values 0.3). All the solutions generate
the same worst achievement value 0.3 and the
final selection of the RPM depends on the to-
tal achievement (regularization term). Actu-
ally, one of solutions S1 to S5 will be selected
as better than S6.

In order to avoid inconsistencies caused by
the regularization, the max-min solution may
be regularized according to the ordered av-
eraging rules [14]. This is mathematically
formalized as follows. Within the space
of achievement vectors we introduce map
Θ = (θ1, θ2, . . . , θm) which orders the co-
ordinates of achievements vectors in a non-
increasing order, i.e., Θ(a1, a2, . . . , am) =

Table 1: Sample achievements with passive
max-min criterion

Sol. a1 a2 a3 a4 a5 a6 min
∑

S1 0.3 1.2 1.2 1.2 1.2 0.3 0.3 5.4
S2 1.2 0.3 1.2 1.2 1.2 0.3 0.3 5.4
S3 1.2 1.2 0.3 1.2 1.2 0.3 0.3 5.4
S4 1.2 1.2 1.2 0.3 1.2 0.3 0.3 5.4
S5 1.2 1.2 1.2 1.2 0.3 0.3 0.3 5.4
S6 1.0 1.0 1.0 1.0 1.0 0.3 0.3 5.3
S7 0.3 0.3 0.3 1.0 0.6 1.0 0.3 3.5

(θ1(a), θ2(a), . . . , θm(a)) iff there exists a per-
mutation τ such that θi(a) = aτ(i) for all i and
θ1(a) ≥ θ2(a) ≥ . . . ≥ θm(a). The standard
max-min aggregation depends on maximiza-
tion of θm(a) and it ignores values of θi(a) for
i ≤ m−1. In order to take into account all the
achievement values, one needs to maximize
the weighted combination of of the ordered
achievements thus representing the so-called
Ordered Weighted Averaging (OWA) aggre-
gation [14]. Note that the weights are then as-
signed to the specific positions within the or-
dered achievements rather than to the partial
achievements themselves. With the OWA ag-
gregation one gets the following RPM model:

max
m∑

i=1

wiθi(a) (4)

where w1 < w2 < . . . < wm are positive
and strictly increasing weights. Actually, they
should be significantly increasing to represent
regularization of the max-min order. When
differences among weights tend to infinity, the
OWA aggregation approximates the leximin
ranking of the ordered outcome vectors [15].
Note that the standard RPM model with the
scalarizing achievement function (2) can be
expressed as the following OWA model:

max

(
(1 +

ε

m
)θm(a) +

ε

m

m−1∑
i=1

θi(a)

)

Hence, the standard RPM model exactly rep-
resents the OWA aggregation (4) with strictly
increasing weights in the case of m = 2
(w1 = ε/2 < w2 = 1 + ε/2). For m > 2
it abandons the differences in weighting of
the largest achievement, the second largest
one etc (w1 = . . . = wm−1 = ε/m). The
OWA RPM model 4 allows one to distinguish
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all the weights by introducing increasing se-
ries (e.g. geometric ones). One may no-
tice in Table 2 that application of increasing
weights w = (0.02, 0.03, 0.05, 0.15, 0.25, 0.5)
within the OWA RPM enables selection of so-
lution S6 from Table 1.

Table 2: Ordered achievements values
Sol. θ1 θ2 θ3 θ4 θ5 θ6 Aw

S1 1.2 1.2 1.2 1.2 0.3 0.3 0.525
S2 1.2 1.2 1.2 1.2 0.3 0.3 0.525
S3 1.2 1.2 1.2 1.2 0.3 0.3 0.525
S4 1.2 1.2 1.2 1.2 0.3 0.3 0.525
S5 1.2 1.2 1.2 1.2 0.3 0.3 0.525
S6 1.0 1.0 1.0 1.0 1.0 0.3 0.650
S7 1.0 1.0 0.6 0.3 0.3 0.3 0.305
w 0.02 0.03 0.05 0.15 0.25 0.5

An important advantage of the RPM depends
on its easy implementation as an expansion
of the original multiple criteria model. Ac-
tually, even complicated partial achievement
functions of the form (3) are strictly increas-
ing and concave, thus allowing for implemen-
tation of the entire RPM model (2) by an LP
expansion [5].

The OWA aggregation is obviously a piece-
wise linear function since it remains linear
within every area of the fixed order of argu-
ments. The ordered achievements used in the
OWA aggregation are, in general, hard to im-
plement due to the pointwise ordering. Its
optimization can be implemented by express-
ing in terms of the cumulated ordered achieve-
ments θ̄k(a) =

∑k
i=1 θm−i+1(a) expressing, re-

spectively: the worst (smallest) achievement,
the total of the two worst achievements, the
total of the three worst achievements, etc. In-
deed,

m∑
i=1

wiθi(a) =
m∑

i=1

w′
iθ̄i(a)

where w′
i = wm−i+1−wm−i for i = 1, . . . ,m−

1, and w′
m = w1. This simplifies dramati-

cally the optimization problem since quanti-
ties θ̄k(a) can be optimized without use of any
integer variables [7]. First, let us notice that
for any given vector a, the cumulated ordered
value θ̄k(a) can be found as the optimal value

of the following LP problem:

θ̄k(a) = min
uik

{
m∑

i=1

aiuik :

m∑
i=1

uik = k, 0 ≤ uik ≤ 1 ∀i }
(5)

The above problem is an LP for a given out-
come vector a while it becomes nonlinear for a
being a vector of variables. This difficulty can
be overcome by taking advantage of the LP
dual to (5). Introducing dual variable tk cor-
responding to the equation

∑m
i=1 uik = k and

variables dik corresponding to upper bounds
on uik one gets the following LP dual of prob-
lem (5):

θ̄k(a) = max
tk ,dik

{ktk −
m∑

i=1

dik :

ai ≥ tk − dik, dik ≥ 0 ∀ i }
(6)

Due the duality theory, for any given vector
a the cumulated ordered coefficient θ̄k(a) can
be found as the optimal value of the above LP
problem.

Taking advantages of the LP expression (6)
for θ̄i the entire OWA aggregation of the
partial achievement functions (4) can be ex-
pressed in terms of LP. Moreover, in the case
of concave piecewise linear partial achieve-
ment functions (as typically used in the
RPM approaches), the resulting formulation
extends the original constraints and crite-
ria with linear inequalities. In particular,
for strictly increasing and concave partial
achievement functions (3), it can be expressed
in the form:

max
m∑

k=1

w′
kzk

s.t.

zk = ktk −
m∑

i=1

dik ∀ k

x ∈ Q, yi = fi(x) ∀ i
ai ≥ tk − dik, dik ≥ 0 ∀ i, k
ai ≤ γ(yi − rr

i )/(r
a
i − rr

i ) ∀ i
ai ≤ (yi − rr

i )/(r
a
i − rr

i ) ∀ i
ai ≤ α(yi − ra

i )/(ra
i − rr

i ) + 1 ∀ i

(7)
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4 WOWA enhancement

Let w = (w1, . . . , wm) and p = (p1, . . . , pm)
be weighting vectors of dimension m such that
wi ≥ 0 and pi ≥ 0 for i = 1, 2, . . . ,m as
well as

∑m
i=1 pi = 1 (typically it is also as-

sumed
∑m

i=1 wi = 1 but it is not neces-
sary in our applications). The correspond-
ing Weighted OWA aggregation of outcomes
a = (a1, . . . , am) is defined as follows [11]:

Aw,p(a) =
m∑

i=1

ωiθi(a) (8)

where the weights ωi are defined as

ωi = w∗(
∑
k≤i

pτ(k))− w∗(
∑
k<i

pτ(k)) (9)

with w∗ a monotone increasing function
that interpolates points ( i

m ,
∑

k≤i wk) to-
gether with the point (0.0) and τ representing
the ordering permutation for a (i.e. aτ(i) =
θi(a)). Moreover, function w∗ is required to
be a straight line when the point can be inter-
polated in this way, thus allowing the WOWA
to cover the standard weighted mean with
weights pi as a special case of equal prefer-
ence weights (wi = 1/m for i = 1, 2, . . . ,m).

The WOWA may be expressed with more
direct formula where preferential (OWA)
weights wi are applied to averages of the cor-
responding portions of ordered achievements
(quantile intervals) (according to the distribu-
tion defined by importance weights pi) [8, 9]:

Aw,p(a) =
m∑

i=1

wim

∫ i
m

i−1
m

F
(−1)
a (ξ) dξ (10)

where F
(−1)
a is the stepwise function

F
(−1)
a (ξ) = θi(a) for βi−1 < ξ ≤ βi. It

can also be mathematically formalized as fol-
lows. First, we introduce the right-continuous
cumulative distribution function (cdf):

Fa(d) =
m∑

i=1

piδi(d) (11)

where δi(d) = 1 if ai ≤ d and 0 other-
wise. Next, we introduce the quantile func-
tion F

(−1)
a = inf {η : Fa(η) ≥ ξ} for 0 < ξ ≤ 1

as the left-continuous inverse of the cumula-
tive distribution function Fa, ie., F

(−1)
a (ξ) =

inf {η : Fa(η) ≥ ξ}for 0 < ξ ≤ 1, and finally
F

(−1)
a (ξ) = F

(−1)
a (1− ξ).

For instance applying importance weighting
p = ( 4

12 , 3
12 , 2

12 , 1
12 , 1

12 , 1
12 ) to solution achieve-

ments from Table 1 and using them together
with the OWA weights w from Table 2 one
gets the WOWA aggregations from Table 3.
The corresponding RPM method selects than
solution S6, similarly to the case of equal im-
portance weights. On the other hand, when
increasing the importance of the last outcome
achievements with p = ( 1

12 , 1
12 , 1

12 , 1
12 , 1

12 , 7
12)

one gets the WOWA values from Table 4.

Formula (10) defines the WOWA value ap-
plying preferential weights wi to importance
weighted averages within quantile intervals.
It may be reformulated with the tail averages:

Aw,p(a) =
m∑

k=1

w′
kmL(a,p,

k

m
) (12)

where L(y,p, ξ) is defined by left-tail inte-
grating of F

(−1)
y , i.e.

L(y,p, ξ) =
∫ ξ

0
F (−1)

y (α)dα (13)

and weights w′
k = wm−k+1 − wm−k for k =

1, . . . ,m− 1 and w′
m = w1.

Graphs of functions L(a,p, ξ) (with respect
to ξ) take the form of convex piecewise linear
curves, the so-called absolute Lorenz curves
[6] connected to the relation of the second or-
der stochastic dominance (SSD). Therefore,
formula (12) relates the WOWA average to
the SSD consistent risk measures based on
the tail means provided that the importance
weights are treated as scenario probabilities.

According to (13), values of function
L(a,p, ξ) for any 0 ≤ ξ ≤ 1 can be given
by optimization:

L(a,p, ξ) = min
si

{
m∑

i=1

aisi :

m∑
i=1

si = ξ, 0 ≤ si ≤ pi ∀ i }
(14)

Introducing dual variable t corresponding to
the equation

∑m
i=1 si = ξ and variables di
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Table 3: WOWA selection with p = ( 4
12 , 3

12 , 2
12 , 1

12 , 1
12 , 1

12)

w 0.02 0.03 0.05 0.15 0.25 0.5 Aw,p(a)
S1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.3 0.3 0.3 0.3 0.3 0.4575
S2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.3 0.3 0.3 0.3 0.525
S3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.3 0.3 0.3 0.6375
S4 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.3 0.3 0.75
S5 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.3 0.3 0.75
S6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.3 0.825
S7 1.0 1.0 0.6 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3185

Table 4: WOWA selection with p = ( 1
12 , 1

12 , 1
12 , 1

12 , 1
12 , 7

12)

w 0.02 0.03 0.05 0.15 0.25 0.5 Aw,p(a)
S1 1.2 1.2 1.2 1.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.345
S2 1.2 1.2 1.2 1.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.345
S3 1.2 1.2 1.2 1.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.345
S4 1.2 1.2 1.2 1.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.345
S5 1.2 1.2 1.2 1.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.345
S6 1.0 1.0 1.0 1.0 1.0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3525
S7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6 0.3 0.3 0.3 0.5125

corresponding to upper bounds on si one gets
the following LP dual expression of L(a,p, ξ)

L(a,p, ξ) = max
t,di

{ξt−
m∑

i=1

pidi :

t− di ≤ ai, di ≥ 0 ∀ i}
(15)

Following (12) and (15) taking into account
piecewise linear partial achievement functions
(3) one gets finally the following model for the
WOWA Reference Point Method with piece-
wise linear partial achievement functions (3):

max
m∑

k=1

w′
kzk

s.t.

zk = ktk −m
m∑

i=1

pidik ∀ k

x ∈ Q, yi = fi(x) ∀ i
ai ≥ tk − dik, dik ≥ 0 ∀ i, k
ai ≤ γ(yi − rr

i )/(r
a
i − rr

i ) ∀ i
ai ≤ (yi − rr

i )/(r
a
i − rr

i ) ∀ i
ai ≤ α(yi − ra

i )/(ra
i − rr

i ) + 1 ∀ i

(16)

Conclusions

The reference point method is a very con-
venient technique for interactive analysis of
the multiple criteria optimization problems.
It provides the DM with a tool for an open
analysis of the efficient frontier. The inter-

active analysis is navigated with the com-
monly accepted control parameters express-
ing reference levels for the individual objec-
tive functions. The partial achievement func-
tions quantify the DM satisfaction from the
individual outcomes with respect to the given
reference levels. The final scalarizing function
is built as the augmented max-min aggrega-
tion of partial achievements which means that
the worst individual achievement is essentially
maximized but the optimization process is ad-
ditionally regularized with the term represent-
ing the average achievement. The regular-
ization by the average achievement is easily
implementable but it may disturb the basic
max-min aggregation. In order to avoid in-
consistencies caused by the regularization, the
max-min solution may be regularized accord-
ing to the Rawlsian principle of justice leading
to the nucleolar RPM model. The nucleolar
RPM implements a consequent max-min ag-
gregation taking into account also the second
worst achievement, the third worse and so on,
thus resulting in much better modeling of the
reference levels concept.

The OWA aggregation with monotonic
weights combines all the partial achievements
allocating the largest weight to the worst
achievement, the second largest weight to the
second worst achievement, the third largest
weight to the third worst achievement, and

280 Proceedings of IPMU’08



so on. It approximates nucleolar RPM intro-
ducing explicit scalarizing achievement func-
tion to be interpreted as utility. Further fol-
lowing the concept of Weighted OWA [11]
the importance weighting of several achieve-
ments may be incorporated into the RPM.
Such a WOWA enhancement of the RPM
uses importance weights to affect achieve-
ment importance by rescaling accordingly its
measure within the distribution of achieve-
ments rather than straightforward rescaling of
achievement values [10]. The ordered regular-
izations are more complicated in implementa-
tion due to the requirement of pointwise or-
dering of partial achievements. However, the
recent progress in optimization methods for
ordered averages [7] allows one to implement
the OWA RPM quite effectively by taking
advantages of piecewise linear expression of
the cumulated ordered achievements. Similar,
model can be achieved for the WOWA RPM.
Actually, in the case of concave piecewise lin-
ear partial achievement functions (typically
used in the RPM), the resulting formulation
extends the original constraints and criteria
with simple linear inequalities thus allowing
for a quite efficient implementation.
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