
On Development of Fuzzy Relational Database Applications

Srdjan Skrbic
Faculty of Science

Trg Dositeja Obradovica 3

21000 Novi Sad

Serbia

shkrba@uns.ns.ac.yu

 Aleksandar Takači
Faculty of Technology

Bulevar Cara Lazara 1

21000 Novi Sad

Serbia

stakaci@tehnol.ns.ac.yu

Abstract

In this paper we examine possibilities

to extend relational data model with

mechanisms that can handle imprecise,

uncertain and inconsistent attribute

values using fuzzy logic. We present a

model for fuzzy knowledge

representation in relational databases

and describe PFSQL – a priority fuzzy

logic enriched SQL. We give a brief

description of fuzzy JDBC driver and

FRDB CASE tool that make complete

set of tools needed to develop Java

fuzzy relational database application. In

addition, a brief survey of research

related to application of fuzzy logic in

relational databases is given in the

introduction. Authors propose several

points in which this research and

implementation can be continued and

extended, contributing to better

understanding of fuzzy database

concepts and techniques.

Keywords: fuzzy relational database, priority

fuzzy SQL, fuzzy JDBC driver.

1 Introduction

One of the disadvantages of the relational model

is its disability to model uncertain and

incomplete data. The idea to use fuzzy sets and

fuzzy logic to extend existing database models

to include these possibilities has been utilized

since the 1980s. Although this area has been

researched for a long time, implementations are

rare. Literature contains references to several

models of fuzzy knowledge representation in

relational databases.

The Buckles-Petry model [6] is the first model

that introduces similarity relations in the

relational model. This paper gives a structure for

representing inexact information in the form of a

relational database. Zvieli and Chen [5] offered

a first approach to incorporate fuzzy logic in the

ER model. Their model allows fuzzy attributes

in entities and relationships.

The GEFRED (Generalized Model of Fuzzy

Relational Databases) model [11] is a

possibilistic model that refers to generalized

fuzzy domains and admits the possibility

distribution in domains. This is a fuzzy

relational database model that has representation

capabilities for a wide range of fuzzy

information. In addition, it describes a flexible

way to handle this information. The GEFRED

model experienced subsequent expansions, such

as [8] and [9].

Chen and Kerre [7] introduced the fuzzy

extension of several major EER concepts. Fuzzy

logic was applied to some of the basic EER

(Extended Entity-Relationship) concepts

connected to the notion of subclass and

superclass. Chaudhry, Moyne and

Rundensteiner [12] proposed a method for

designing fuzzy relational databases following

the extension of the ER model of Zvieli and

Chen. They also proposed a design methodology

for FRDBs, which contains extensions for

representing the imprecision of data in the ER

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU’08, pp. 268–273

Torremolinos (Málaga), June 22–27, 2008

model, and a set of steps for the derivation of a

FRDB from this extended ER model.

Galindo, Urrutia and Piattini [10] describe a way

to use fuzzy EER model to model the database

and represent modelled fuzzy knowledge using

relational database in detail. This work gives

insight into some new semantic aspects and

extends the EER model with fuzzy capabilities.

Devised model is called FuzzyEER model. Also,

a way to translate FuzzyEER model to the

FIRST-2, a database schema that allows

representation of fuzzy attributes in relational

databases is given. In addition, in this work,

authors introduce and describe specification and

implementation of the FSQL – an SQL language

with fuzzy capabilities in great detail.

In [2] authors have studied the possibilities to

extend the relational model with fuzzy logic

capabilities. The subject was elaborated in [4],

where a detailed model of fuzzy relational

database was given. Moreover, using the

concept of Generalized Priority Constraint

Satisfaction Problem (GPFCSP) from [1] and

[13] authors have found a way to introduce

priority queries into FRDB, which resulted in

the PFSQL query language. In [3] authors

introduce similarity relations on the fuzzy

domain which are used to evaluate FRDB

conditions. PFSQL allows the conditions in the

WHERE clause of the query to have different

priority i.e. importance degree. The GPFCSP

gives the theoretical background for the

implementation of priority queries. This is one

of the first languages with such capabilities.

In this paper, we focus on an effort to produce a

complete solution for a fuzzy relational database

application development. We describe the

architecture of the PFSQL implementation, and

the data model that this implementation is based

on. Furthermore, we give a brief description of a

fuzzy JDBC driver and a FRDB CASE tool.

Together, these components make a set of tools

that allow and facilitate development of FRDB

applications. We describe the features and basic

principles of every component of this system,

but technical details about the implementation

are far beyond the scope of this paper.

2 PFSQL

In order to allow the use of fuzzy values in SQL

queries, we extended the classical SQL with

several new elements. In addition to fuzzy

capabilities that make the fuzzy SQL - FSQL,

we add the possibility to specify priorities for

fuzzy statements. We named the query language

constructed in this manner priority fuzzy SQL –

PFSQL. This appears to be the first

implementation that has such capabilities.

The basic difference between SQL and PFSQL

is in the way the database processes records. In a

classical relational database, queries are

executed so that a tuple is either accepted in the

result set, if it fulfills the conditions given in a

query, or removed from the result set if it does

not fulfill the conditions. In other words, every

tuple is given a value true (1) or false (0). On the

other hand, as the result set, the PFSQL returns a

fuzzy relation on the database. Every tuple

considered in the query is given a value from the

unit interval. This value is calculated using

fuzzy logic operators.

The question is what elements of the classical

SQL should be extended. Because variables can

have both crisp and fuzzy values, it is necessary

to allow comparison between different types of

fuzzy values as well as between fuzzy and crisp

values. In other words, PFSQL has to be able to

calculate expressions like

height=triangle(180,11,8)

regardless of what value of height is in the

database – fuzzy or crisp. Expression

triangle(a,b,c) denotes triangular fuzzy number

with peak at a, with left offset b, and right offset

c. Next, we demand the possibility to set the

conditions like

height<triangle(180,5,5).

The Ordering and addition operations on the set

of fuzzy numbers give grounds for the

introduction of set functions like MIN, MAX

and SUM in the PFSQL. Moreover, it is possible

to define the fuzzy GROUP BY clause in

combination with the aggregate functions on

fuzzy values.

Proceedings of IPMU’08 269

The Classical SQL includes possibilities to

combine conditions using logical operators. This

possibility also has to be a part of fuzzy

extensions, thus combining fuzzy conditions is

also a feature of our implementation. Values are

calculated using t-norms, t-conorms, and so

called “strict” negation. Queries are handled

using priority fuzzy logic which is based on the

GPFCSP systems.

Nested queries are yet another problem that we

encountered in our effort to extend SQL with

fuzzy capabilities. We can divide nested queries

in two categories – ones that do not depend on

the rest of the query and the ones that do.

Independent SQL queries are not problematic,

they can be calculated separately, and resulting

values can be used in the remainder of the query

as constants. Dependent SQL queries with

dependence expressions that do not use fuzzy

values or operators are also easy to handle –

they can be evaluated by a classical SQL

interpreter. However, if a nested query is

dependent and dependence conditions contain

fuzzy values or operators, then it remains

unclear how to evaluate such a query and what

does this dependence mean.

We do not present the PFSQL EBNF syntax

here because of its voluminosity, but it can be

acquired in electronic form from authors.

In the classical SQL it is clear how to assign

truth value to every elementary condition. With

the fuzzy attributes, the situation becomes more

complex. At first, we assign a truth value from

the unit interval to every elementary condition.

The only way to do this is to give set of

algorithms that calculate truth values for every

possible combination of values in a query and

values in the database. For instance, if a query

contains a condition that compares a fuzzy

quantity value with a triangular fuzzy number in

the database, we must have algorithm to

calculate the compatibility of the two fuzzy sets.

After the truth values from the unit interval are

assigned, they are aggregated using fuzzy logic.

We use a t-norm in case of operator AND, and

its dual t-conorm in case of operator OR. For

negation we use strict negation: xxN −= 1)(.

In case of priority statements, we use the

GPFCSP system rules to calculate the result.

We will now describe processes that allow

PFSQL queries to be executed. The basic idea is

to first transform the PFSQL query into

something that a classical SQL interpreter

understands. Namely, conditions with fuzzy

attributes are removed from the WHERE clause

and moved up in the SELECT clause. In this

way, conditions containing fuzzy constructs are

eliminated, so that the database will return all

the tuples – ones that fulfill fuzzy conditions as

well as the ones that do not. As a result of this

transformation, we get a classical SQL query.

Then, when this query is executed against the

database, results are interpreted using fuzzy

mechanisms. These mechanisms assign a value

(membership degree) from the unit interval to

every tuple in the result set. If a threshold is

given, all the tuples in the result set that have

satisfaction degree below the threshold are

removed.

A more detailed description of the PFSQL

language and mechanisms of its implementation

can be found in [4].

3 FRDB Data Model

It is clear now that the PFSQL implementation

has to rely upon a meta data about fuzzy

attributes that reside inside the database. For

these purposes, a FRDB data model has been

defined. In this section we give a brief

description of this model.

Our FRDB data model allows data values to be

any fuzzy subset of the attribute domain. User

only needs to specify a membership function of

a fuzzy set. Hypothetically, for each fuzzy set

we should have an algorithm on how to

calculate the values of its membership function.

This would lead to a large spatial complexity of

the database. Most often, this is solved by

introducing well known standard types of fuzzy

sets (triangular, trapezoidal etc.) as attribute

values. If a type of a fuzzy set is introduced,

then we only need to store the parameters that

are necessary to calculate the value of the

membership function. This is the most common

270 Proceedings of IPMU’08

way to implement FRDB, and we used it in our

model also.

On the other hand, we did not want to restrict

ourselves to these particular fuzzy sets, so we

allow users to specify a general membership

function for each attribute value. Our idea is to

have the most common fuzzy set types

implemented and that the attribute values in

FRDB are most often standard fuzzy sets, and

only a small percentage of attribute values are

generalized fuzzy sets specified by user, though

our model works with general fuzzy sets in

every aspect of FRDB - storing, querying, etc.

We introduce one more extension of the

attribute value, the linguistic label. Linguistic

labels are used to represent the most common

and widely used expressions of a natural

language such as “tall people”, “small salary” or

“mediocre result”. Linguistic labels are in fact

named fuzzy values from the domain.

Considering these extensions, we can define a

domain of a fuzzy attribute as follows:

LDC LFDD ∪∪=

where CD is a classical attribute domain, DF is

a set of all fuzzy subsets of the domain, and LL

is the set of linguistic labels.

In order to represent these fuzzy values in the

database, we extend this model with additional

tables that make fuzzy meta data model. Several

tables are introduced to cover all described

needs.

One of these tables is created for the purpose of

storing the data whether an attribute is fuzzy or

not. All attribute names in the database are

stored here, and beside the table and attribute

name, we have information whether the attribute

is fuzzy or not. The main table in the meta

model represents a connection between fuzzy

data model and fuzzy data meta model. Every

fuzzy value in every table is a foreign key that

references table’s primary key attribute. Thus,

we have one record in this table for every record

with the fuzzy value in the database. Another

one of its attributes is a foreign key from the

table that stores information on fuzzy types.

This table stores names of every possible types

of fuzzy values allowed in the model.

For every type of fuzzy value there is a separate

table in the meta model that stores data for a

specific fuzzy type. Every one of these tables

has a foreign key attribute from the main table in

the meta model. In this way, a value for a

specific fuzzy attribute is stored in one of these

tables depending on its type.

In order to represent linguistic labels, we

introduce another attribute in the main table as a

foreign key that represents recursive relationship

and references the table’s primary key. This

attribute is used to represent linguistic labels. It

has a value different then null if the type of the

attribute that it represents is a linguistic label. As

mentioned before, linguistic labels only

represent names for previously defined fuzzy

values. In this fashion, if an attribute is a

linguistic label, then its name is stored in the

table specialized for storage of linguistic labels.

Complete description of all values and types that

can be stored in the database can be found in [4].

4 Fuzzy JDBC Driver and FRDB

CASE Tool

The need to ease the PFSQL usage from Java

programs and still keep database independence

is resolved with the implementation of the fuzzy

JDBC driver. This driver acts as a wrapper for

the PFSQL processing mechanisms described in

the second section and for the JDBC API

implemented by the driver for a specific

RDBMS. JDBC driver for the database used

simply becomes a parameter that the fuzzy

JDBC driver uses to access the database. The

architecture of the system built in this way is

shown at Figure 1.

Figure 1: Fuzzy JDBC driver.

Proceedings of IPMU’08 271

Java program uses interfaces offered by the

fuzzy JDBC driver as a front end component.

These interfaces include possibilities to:

• initialize driver class,

• create database connection,

• create and execute PFSQL statements, and

• read result set.

When executed, PFSQL statements are pre-

processed in the way described in the section 2,

and sent to the database as ordinary SQL

statements using a JDBC driver. Result returned

from the database is processed again by the

PFSQL mechanisms (membership degrees are

added), and returned to the Java program using

front end classes.

The Fuzzy JDBC driver with PFSQL

mechanisms and the FRDB data model

described above offer a complete solution to

develop database applications when a database

model exists in the database. In order to ease the

development of data models enriched with fuzzy

elements as described in section 3, a CASE tool

is implemented.

This CASE tool is a standalone Java application

that offers automatic DDL (Data Definition

Language) code generation for fuzzy relational

data models with respect to the fuzzy meta data

described in section 3.

Fuzzy relational tables supported by the CASE

tool can contain regular relational attributes of

any (user defined) data type and fuzzy attributes

introduced as a new data type. Primary key

consisting of non fuzzy attributes can be

specified for every table. There are two types of

relationships between tables (foreign keys) –

identifying and non-identifying. Identifying

relationship makes foreign key attributes part of

the child table primary key, while non-

identifying relationship does not.

For a given fuzzy data model constructed in this

way, the CASE tool generates complete fuzzy

meta data structure, integrates it into the model

and generates DDL file. The generation process

is parameterized so that it can generate DDL file

using SQL dialect supported by any specific

RDBMS.

5 Conclusion

In this paper we give a brief overview of

research conducted in the field of fuzzy

databases. We present a variant of the SQL

language enhanced with fuzzy logic and a

concept of priority. Implementation of this

PFSQL is in close connection with the data

model that extends the relational model with

capabilities to store fuzzy values.

Comparing our data model with one of the most

advanced fuzzy relational data models – the

FIRST-2, leads to a conclusion that there are

similarities between the two. Although the

methods for fuzzy value representation are

completely different, functionally, our model is

a subset of the FIRST-2 model. Our intention

was to define the simplest possible model that

supports the most widely used fuzzy concepts,

and stores values as effectively as possible

without too much overhead. At the same time,

the model had to include all the features

necessary to implement the PFSQL interpreter.

We have developed the PFSQL query language

from ground up, extending the features of SQL

with fuzzy logic. Among other features already

present in other fuzzy query languages, this

query language allows priority statements to be

specified for query conditions. Membership

degrees of query tuples are calculated using the

GPFCSP system. The PFSQL is the first query

language that introduces such capabilities.

Moreover, the PFSQL is implemented using

Java, outside the database, which makes our

implementation database independent.

A set of tools that facilitate fuzzy relational

database applications development consisting of

a fuzzy JDBC driver and a FRDB CASE tool is

described in continuation. To the best of our

knowledge, these tools are the only ones with

such capabilities today.

In order to offer a more complete solution for

the fuzzy relational database application

development, it is necessary to enrich the

PFSQL language with more features of a regular

SQL, such as insert, update and delete

statements. In addition, the fuzzy JDBC driver

has to be augmented with other interfaces and

272 Proceedings of IPMU’08

possibilities offered by the JDBC API

specification. Authors intend to study and solve

these problems in the future.

Acknowledgements

Authors would like to acknowledge the support

of the Serbian Ministry of Science and

Environmental Protection, project

”Mathematical models of non-linearity,

uncertainty and decision making”, No. 144012

and project “Abstract Methods and Applications

in Computer Science” No. 144017A, and also

the support of the Ministry of Science,

Technology and Environmental Protection of

Vojvodina.

References

[1] A. Takači (2005). Schur-concave triangular

norms: characterization and application in

PFCSP. Fuzzy Sets and Systems, no. 155,

volume 1, pages 50-64.

[2] A. Takači, S. Skrbic (2005). How to

Implement FSQL and Priority Queries.

Proceedings of the 3
rd
 Serbian-Hungarian

Joint Symposium on Intelligent Systems.

Pages 261-267, Subotica, Serbia.

[3] A. Takači, S. Skrbic (2007). Measuring the

similarity of different types of fuzzy sets in

FRDB. Proceedings of the EUSFLAT-LFA.

Pages 247-252, Ostrava, Czech Republic.

[4] A. Takači, S. Skrbic (2008). Data Model of

FRDB with Different Data Types and

PFSQL. In Handbook of Research on Fuzzy

Information Processing in Databases. Ed. J.

Galindo. Pages 403-430, Hershey, PA,

USA, Information Science Reference.

[5] A. Zvieli, P. Chen (1986). ER modelling

and fuzzy databases. In Proceedings of the

Second International Conference on Data

Engineering. pages 320-327, LA, USA.

[6] B.P. Buckles, F.E. Petry (1982). A fuzzy

representation of data for relational

databases. Fuzzy Sets and Systems no. 7,

pages 213-226.

[7] G.Q. Chen, E.E. Kerre (1998). Extending

ER/EER concepts towards fuzzy conceptual

data modelling. Proceedings of the IEEE

International Conference on Fuzzy Systems.

Pages 1320-1325, Anchorage, AK, USA.

[8] J. Galindo, J.M. Medina, M.C. ARANDA,

(1999). Querying fuzzy relational databases

through fuzzy domain calculus.

International Journal of Intelligent Systems,

no. 14, volume 4, pages 375-411.

[9] J. Galindo, J.M. Medina, J.C. Cubero, M.T.

Garcia, (2001): Relaxing the universal

quantifier of the division in fuzzy relational

databases. International Journal of

Intelligent Systems, no. 16, volume 6, pages

713-742.

[10] J. Galindo, A. Urrutia, M. Piattini

(2006). Fuzzy Databases: Modelling Design

and Implementation. Hershey, USA: IDEA

Group.

[11] J.M. Medina, O. Pons, M.A. Vila

(1994). GEFRED: A Generalized Model of

Fuzzy Relational Databases. Information

Sciences, no. 76, pages 87-109.

[12] N. Chaudhry, J. Moyne, E.

Rundensteiner (1994). A design

methodology for databases with uncertain

data. Proceedings of the Seventh

International Working Conference on

Scientific and Statistical Database

Management. Pages 32-41, Charlottesville,

VA, USA.

[13] X. Luo, J.H. Lee, H. Leung, N.R.

Jennings (2003): Prioritized fuzzy constraint

satisfaction problems: axioms, instantiation

and validation. Fuzzy Sets and Systems, no.

136, pages 151-188.

Proceedings of IPMU’08 273

