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Abstract

In this paper we consider mix-
ture operators to aggregate individ-
ual preferences and we character-
ize those that allow us to extend
some majority rules, such as simple,
Pareto and absolute special majori-
ties, to the field of gradual prefer-
ences.
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1 Introduction

Aggregation operators are a fundamental tool
in multicriteria decision making procedures.
For this reason, they have received a great
deal of attention in the literature (see, for in-
stance, Marichal [6], Calvo, Mayor and Mesiar
[1] and Xu and Da [15]).

An interesting kind of non-monotonic aggre-
gation is obtained when mixture operators are
used. Mixture operators were introduced by
Marques Pereira and Pasi [8] in order to con-
sider weighted aggregation operators in which
the weights depend on the attribute satisfac-
tion values. Thus, mixture operators are sim-
ilar to weighted means where the numerical
weights have been replaced by weighting func-
tions.

Mixture operators can be used to aggregate
individual preferences into a collective prefer-
ence. Given that some aggregation operators

can be seen as extensions of majority rules
to the field of gradual preferences, the aim of
this paper is to determine the mixture oper-
ators that correspond to extensions of some
particular classes of majority rules.

We consider individual preferences expressed
as pairwise comparisons between alternatives,
with preference intensity values in the [0,1] in-
terval. In this way each pairwise comparison
is associated with a graded preference profile.
Once an aggregation operator is chosen, each
graded preference profile produces a collective
preference intensity value in the unit interval.
On the basis of this value and through a kind
of strong α-cut, where α ∈ [0.5, 1), we can de-
cide if an alternative is chosen or if both alter-
natives are collectively indifferent. When in-
dividuals do not grade their preferences (that
is, when they are represented through the val-
ues 0, 0.5, and 1), the previous procedure
allows us to obtain a majority rule. Hence,
once α fixed, it is possible to know what class
of majority rule is present in the aggregation
process according to the used operator.

We note that this procedure has already been
used to characterize several classes of aggre-
gation functions that extend some well-known
majority rules. Thus, Garćıa-Lapresta and
Llamazares [3] generalize two classes of ma-
jorities based on difference of votes by using
quasiarithmetic means and window OWA op-
erators as aggregation functions. Likewise,
Llamazares [4, 5] has characterized the OWA
operators that generalize simple, Pareto and
absolute special majorities.

In this paper we characterize the mixture op-
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erators that allow us to extend simple, Pareto
and absolute special majorities to the field of
gradual preferences.

The organization of the paper is as follows.
In Section 2 we introduce the used model for
extending a majority rule through an aggre-
gation function. In Section 3 we show some
characterizations of simple, Pareto and abso-
lute special majorities. In Section 4 we in-
troduce mixture operators and we determine
those that satisfy the self-duality property.
Finally, in Section 5 we give the main results
of the paper.

2 The model

We consider m voters, with m ≥ 3, and two
alternatives x and y. Voters represent their
preferences between x and y through vari-
ables ri. If the individuals grade their pref-
erences, then ri ∈ [0, 1] denotes the inten-
sity with which voter i prefers x to y. We
also suppose that 1 − ri is the intensity with
which voter i prefers y to x. If the indi-
viduals do not grade their preferences, then
ri ∈ {0, 0.5, 1} represents that voter i prefers
x to y (ri = 1), prefers y to x (ri = 0), or is in-
different between both alternatives (ri = 0.5).
The justification of this three-valued represen-
tation can be found in Garćıa-Lapresta and
Llamazares [2].

A profile of preferences is a vector r =
(r1, . . . , rm) that describes voters’ preferences
between alternative x and alternative y. Ob-
viously, 1− r = (1 − r1, . . . , 1 − rm) shows
voters’ preferences between y and x. For each
profile of preferences, the collective preference
will be obtained by means of an aggregation
function.

Definition 1. An aggregation function is a
mapping F : [0, 1]m −→ [0, 1]. A discrete ag-
gregation function (DAF) is a mapping H :
{0, 0.5, 1}m −→ {0, 0.5, 1}.
The interpretation of collective preference is
consistent with the foregoing interpretation
for individual preferences. Thus, if F is an
aggregation function, then F (r) is the inten-
sity with which x is collectively preferred to

y. When H is a DAF, then H(r) shows us if
an alternative is collectively preferred to the
other (H(r) ∈ {0, 1}), or the alternatives are
collectively indifferent (H(r) = 0.5).

Next we present some well-known properties
of aggregation functions: Symmetry, mono-
tonicity, self-duality and idempotency. Sym-
metry means that collective intensity of pref-
erence depends on only the set of individual
intensities of preference, but not on which in-
dividuals have these preferences. Monotonic-
ity means that collective intensity of prefer-
ence does not decrease if no individual in-
tensity decreases. Self-duality means that if
everyone reverses their preferences between x
and y, then the collective preference is also re-
versed. Finally, idempotency means that col-
lective intensity of preference coincides with
individual intensities when these are the same.

Given r ∈ [0, 1], r, s ∈ [0, 1]m and σ a
permutation on {1, . . . ,m}, we will use the
following notation: rσ = (rσ(1), . . . , rσ(m));
1 = (1, . . . , 1); r · 1 = (r, . . . , r); and r ≥ s
will denote ri ≥ si for all i ∈ {1, . . . ,m}.
Definition 2. Let F be an aggregation func-
tion.

1. F is symmetric if for every profile r ∈
[0, 1]m and for every permutation σ of
{1, . . . ,m} the following holds

F (rσ) = F (r).

2. F is monotonic if for all pair of profiles
r, s ∈ [0, 1]m the following holds

r ≥ s ⇒ F (r) ≥ F (s).

3. F is self-dual if for every profile r ∈
[0, 1]m the following holds

F (1− r) = 1− F (r).

4. F is idempotent if for every r ∈ [0, 1] the
following holds

F (r · 1) = r.

All the previous properties are also valid for
DAFs. Next we show some consequences of
the previous properties. The cardinal of a set
will be denoted by #.
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Remark 1. If H is a symmetric DAF, then
H(r) depends on only the number of 1, 0.5,
and 0. Given a profile r, if we consider

m1 = #{i | ri = 1},
m2 = #{i | ri = 0.5},
m3 = #{i | ri = 0},

then m1 + m2 + m3 = m.

Definition 3. Let H be a symmetric DAF
and

M = {(m1,m2,m3) ∈ {0, . . . ,m}3 |
m1 + m2 + m3 = m}.

We say that H is represented by the function
h : M−→ {0, 0.5, 1}, defined by

h(m1,m2,m3) =

= H(1, (m1). . . , 1, 0.5, (m2). . . , 0.5, 0, (m3). . . , 0).

Definition 4. The binary relation � on M
is defined by

(m1,m2,m3) � (n1, n2, n3) ⇔

⇔
{

m1 ≥ n1,

m1 + m2 ≥ n1 + n2.

We note that � is a partial order on M (re-
flexive, antisymmetric, and transitive binary
relation).

Remark 2. If H is a symmetric DAF rep-
resented by h, then it is monotonic if and
only if h(m1,m2,m3) ≥ h(n1, n2, n3) for
all (m1,m2,m3), (n1, n2, n3) ∈ M such that
(m1,m2,m3) � (n1, n2, n3).

Remark 3. If H is a symmetric DAF rep-
resented by h, then it is self-dual if and only
if h(m3,m2,m1) = 1− h(m1,m2,m3) for all
(m1,m2,m3) ∈ M. In this case, H is char-
acterized by the set h−1(1), since

h−1(0) = {(m1,m2,m3) ∈M |
h(m3,m2,m1) = 1},

h−1(0.5) = M\ (h−1(1) ∪ h−1(0)).

When a DAF is self-dual, both alternatives
have an egalitarian treatment. Therefore, if
the DAF is also symmetric and the number
of voters who prefer x to y coincides with the
number of voters who prefer y to x, then x
and y are collectively indifferent.

Remark 4. If H is a symmetric and self-dual
DAF represented by h, then h(m1,m2,m3) =
0.5 for all (m1,m2,m3) ∈M such that m1 =
m3.

By Remark 3, it is possible to define a sym-
metric and self-dual DAF H by means of
the elements (m1,m2,m3) ∈ M where the
mapping that represents H takes the value
1. Based on this, we now show some DAFs
widely used in real decisions.

Definition 5.

1. The simple majority, HS, is the symmet-
ric and self-dual DAF defined by

h(m1,m2,m3) = 1 ⇔ m1 > m3.

2. The absolute majority, HA, is the sym-
metric and self-dual DAF defined by

h(m1,m2,m3) = 1 ⇔ m1 >
m

2
.

3. The Pareto majority, HP , is the symmet-
ric and self-dual DAF defined by

h(m1,m2,m3) = 1 ⇔
{

m1 > 0,

m3 = 0.

4. The unanimous majority, HU , is the
symmetric and self-dual DAF defined by

h(m1,m2,m3) = 1 ⇔ m1 = m.

5. Given β ∈ [0.5, 1), the absolute special
majority Qβ is the symmetric and self-
dual DAF defined by

h(m1,m2,m3) = 1 ⇔ m1 > βm.

It should be noted that absolute and unani-
mous majorities are specific cases of absolute
special majorities.
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Given an aggregation function, we can gen-
erate different DAFs by means of a param-
eter α ∈ [0.5, 1). The procedure employed is
based on strong α-cuts. Moreover, it is easy to
check that the DAFs obtained are symmetric,
monotonic, and self-dual when the original ag-
gregation function satisfies these properties.

Definition 6. Let F be an aggregation func-
tion and α ∈ [0.5, 1). Then the α–DAF asso-
ciated with F is the DAF Fα defined by

Fα(r) =


1, if F (r) > α,

0.5, if 1− α ≤ F (r) ≤ α,

0, if F (r) < 1− α.

Remark 5. Given an aggregation function
F and α ∈ [0.5, 1), the following statements
hold:

1. If F is symmetric, then Fα is also sym-
metric.

2. If F is monotonic, then Fα is also mono-
tonic.

3. If F is self-dual, then Fα is also self-dual.

Similar to the case of symmetric DAFs, when
F is a symmetric aggregation function, the
restriction F |{0,0.5,1}m can be represented by
f : M−→ [0, 1], where

f(m1,m2,m3) =

= F (1, (m1). . . , 1, 0.5, (m2). . . , 0.5, 0, (m3). . . , 0).

Now we show the relationship between f and
the family of mappings fα that represent the
α–DAFs associated with F .

Remark 6. Let F be a symmetric aggrega-
tion function and α ∈ [0.5, 1). Then Fα and
F |{0,0.5,1}m can be represented by the map-
pings fα and f , respectively. The following
relationship between these mappings exists:

fα(m1,m2,m3) =

=


1, if f(m1,m2,m3) > α,

0.5, if 1− α ≤ f(m1,m2,m3) ≤ α,

0, if f(m1,m2,m3) < 1− α.

3 Characterization of simple,
Pareto and absolute special
majorities

In order to generalize simple, Pareto and ab-
solute special majorities by means of mix-
ture operators, we show in this section some
characterizations of these majority rules. It
is worth noting that these characterizations,
given in Llamazares [4, 5], are based on the
monotonicity of these rules.

Simple majority is characterized through the
elements (m1,m2,m3) ∈ M such that m1 =
m3 + 1.

Proposition 1. Let H be a symmetric,
monotonic, and self-dual DAF represented by
h. Then the following statements are equiva-
lent:

1. H = HS.

2. h(m3 + 1,m− (2m3 + 1),m3) = 1 for all
m3 ∈ {0, . . . , [m−1

2 ]}.

Pareto and absolute special majorities are
both characterized through two elements of
M. The first one corresponds to the mini-
mum support that alternative x needs to be
selected. The second one corresponds to the
maximum support that alternative x can ob-
tain without being selected.

Proposition 2. Let H be a symmetric,
monotonic, and self-dual DAF represented by
h. Then the following statements are equiva-
lent:

1. H = HP .

2. h(1,m−1, 0) = 1 and h(m−1, 0, 1) < 1.

Proposition 3. Let H be a symmetric,
monotonic, and self-dual DAF represented by
h and β ∈ [0.5, 1). Then the following state-
ments are equivalent:

1. H = Qβ.

2. h([βm] + 1, 0,m − [βm] − 1) = 1 and
h([βm],m− [βm], 0) < 1.
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4 Mixture operators

Mixture operators were introduced by Mar-
ques Pereira and Pasi [8] in order to consider
weighted aggregation operators in which the
weights depend on the attribute satisfaction
values.

Definition 7. Let ϕ : [0, 1] −→]0,∞[ be a
continuous function. The mixture operator
Wϕ : [0, 1]m −→ [0, 1] generated by ϕ is the
aggregation function defined by

Wϕ(r) =

m∑
i=1

ϕ(ri)ri

m∑
j=1

ϕ(rj)
.

The mixture operator Wϕ(r) can be written
as a weighted average of the variables ri,

Wϕ(r) =
m∑

i=1

wi(r)ri,

where the classical constant weights wi are
replaced by the weighting functions

wi(r) =
ϕ(ri)

m∑
j=1

ϕ(rj)
.

Mixture operators are symmetric and idempo-
tent aggregation functions. The monotonicity
of mixture operators has been studied by Mar-
ques Pereira and Pasi [8], Marques Pereira
[7], Ribeiro and Marques Pereira [11, 12],
Marques Pereira and Ribeiro [9], Mesiar and
Špirková [10] and Špirková [13, 14].

With regard to self-duality property, it is easy
to check that the mixture operator Wϕ is self-
dual if and only if for every r ∈ [0, 1]m the
following holds

m∑
i=1

(
wi(r)− wi(1− r)

)
ri = 0.

From this relationship, it is possible to obtain
a characterization of self-dual mixture opera-
tors based on the fulfillment of a similar prop-
erty by the function ϕ.

Proposition 4. Let Wϕ be the mixture oper-
ator generated by ϕ. Wϕ is self-dual if and
only if ϕ(r) = ϕ(1− r) for all r ∈ [0, 1].

5 Majority rules obtained through
mixture operators

In this section we establish the main results of
the paper. Simple, Pareto and absolute spe-
cial majorities are generated through α-DAFs
associated with self-dual mixture operators.
In this way, the outcomes of this section al-
low us to extend these majority rules to the
framework of gradual preferences by means of
mixture operators.

First of all, we give a necessary and sufficient
condition in order to obtain simple major-
ity through α-DAFs associated with self-dual
mixture operators.

Theorem 1. Let Wϕ be a self-dual mixture

operator and γ =
ϕ(0.5)
ϕ(1)

. The following state-

ments hold:

1. If γ ≥ 1:

Wϕ
α = HS ⇔ α <

2 + (m− 1)γ
2(1 + (m− 1)γ)

.

2. If γ < 1:

(a) If m is odd:

Wϕ
α = HS ⇔ α <

m + 1
2m

.

(b) If m is even:

Wϕ
α = HS ⇔ α <

m + γ

2(m + γ − 1)
.

From the previous result it is straightforward
to obtain the values of α for which simple ma-
jority can be generated through the α-DAF
associated with a self-dual mixture operator.

Corollary 1.

1. If m is odd, then there exists a self-dual
mixture operator Wϕ such that Wϕ

α = HS

if and only if α <
m + 1
2m

.
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2. If m is even, then there exists a self-dual
mixture operator Wϕ such that Wϕ

α = HS

if and only if α <
m

2(m− 1)
.

In the following theorem we characterize the
self-dual mixture operators for which the α-
DAFs associated are Pareto majority.

Theorem 2. Let Wϕ be a self-dual mixture

operator and γ =
ϕ(0.5)
ϕ(1)

. The following state-

ment holds:

Wϕ
α = HP ⇔ γ <

2
(m− 1)(m− 2)

and

1− 1
m
≤ α <

1
2

+
1

2(1 + (m− 1)γ)
.

In the next theorem we give a necessary and
sufficient condition in order to obtain absolute
special majorities through α-DAFs associated
with self-dual mixture operators.

Theorem 3. Let Wϕ be a self-dual mixture

operator and γ =
ϕ(0.5)
ϕ(1)

. The following state-

ment holds:

Wϕ
α = Qβ ⇔

γ > 2[βm]
m− [βm]− 1

(m− [βm])(2[βm] + 2−m)
and

1
2

+
1

2
(

1 +
m− [βm]

[βm]
γ

) ≤ α <
1 + [βm]

m
.

As particular cases of this theorem it is
straightforward to give necessary and suffi-
cient conditions to obtain absolute and unan-
imous majorities through α-DAFs associated
with self-dual mixture operators.

Corollary 2. Let Wϕ be a self-dual mixture

operator and γ =
ϕ(0.5)
ϕ(1)

. The following state-

ments hold:

1. (a) If m is odd:

Wϕ
α = HA ⇔ γ >

(m− 1)2

m + 1
and

1
2
+

1

2
(

1 +
m + 1
m− 1

γ

) ≤ α <
1
2
+

1
2m

.

(b) If m is even:
Wϕ

α = HA ⇔ γ >
m

2
− 1 and

1
2

+
1

2(1 + γ)
≤ α <

1
2

+
1
m

.

2. Wϕ
α = HU ⇔ γ > 0 and

α ≥ 1
2

+
m− 1

2(m + γ − 1)
.
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