
Fuzzy Quantifiers with and without Arguments for Databases:
Definition, Implementation and Application to Fuzzy Dependencies

José Galindo

Dpto. Lenguajes y Ciencias de
la Computación

Universidad de Málaga,
Spain.

jgg@lcc.uma.es

 Ramón A. Carrasco
Dpto. Lenguajes y Sistemas

Informáticos
Universidad de Granada,

Spain.
racg@ugr.es

 Ana Mª Almagro
I.E.S. Alcaria

Puebla del Río,
Sevilla, Spain

anacurra@hotmail.com

Abstract

This paper studies how fuzzy
quantifiers may be defined and
implemented in a fuzzy database
context. Fuzzy quantifiers are very
useful for fuzzy queries, fuzzy
constraints and fuzzy data mining
applications. Besides, this paper shows
different kind of fuzzy quantifiers with
and without arguments. Finally, we
show how fuzzy dependencies may use
these fuzzy quantifiers.

Keywords: Fuzzy Queries, Fuzzy Quantifiers,
Fuzzy Databases, FSQL, Fuzzy Dependencies.

1 Introduction

Fuzzy or linguistic quantifiers [5][8][9][11]
allow us to express fuzzy quantities or
proportions in order to provide an approximate
idea of the number of elements of a subset
fulfilling a certain condition or the proportion of
this number in relation to the total number of
possible elements.

As we shall see, fuzzy quantifiers can be
absolute or relative, and some examples are
“much more than 10”, “close to 100”, “a great
number of”, “the majority” or “most”, “the
minority” and so on.

In a fuzzy database context [6][7], fuzzy
quantifiers are used in fuzzy constraints, fuzzy
queries (for example using FSQL language [10])
and fuzzy data mining applications. For
example, a fuzzy query is “Give me employees
who work for most projects”, while a fuzzy
constraint is that “An employee must work for
many projects”. In Section 5 we will see a data
mining application.

These quantifiers must be stored in the database
data dictionary. Thus, its definition could be
used when it is necessary. However, definition
of each quantifier depends on the object or
context in which it is used and, besides, we find
very useful to define fuzzy quantifiers with
arguments. This paper studies, how to define
these fuzzy quantifiers in a fuzzy database and
suggests some fuzzy quantifiers definitions,
which may be used as default definitions in any
fuzzy database.

Finally, this work shows an application in the
data mining area, searching for fuzzy
dependencies.

2 Definition of Fuzzy Quantifiers

Fuzzy quantifiers can be absolute or relative:
Absolute quantifiers express quantities over the
total number of elements of a particular set,
stating whether this number is, for example,
“much more than 10”, “close to 100”, “a great
number of”... Generalizing this concept, we can
consider fuzzy numbers as absolute fuzzy
quantifiers, in order to use expressions like
“approximately between 5 and 10”,
“approximately −8”... Note that the expressed
value may be positive or negative. In this case,
we can see that the truth of the quantifier
depends on a single quantity. For this reason, the
definition of absolute fuzzy quantifiers is, as we
shall see, very similar to that of fuzzy numbers.

Relative quantifiers express measurements
over the total number of elements, which fulfill
a certain condition depending on the total
number of possible elements (the proportion of
elements). Consequently, the truth of the
quantifier depends on two quantities. This type
of quantifier is used in expressions such as “the

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU’08, pp. 227–234

Torremolinos (Málaga), June 22–27, 2008

majority” or “most”, “the minority”, “little of”,
“about half of”... In this case, in order to
evaluate the truth of the quantifier we need to
find the total number of elements fulfilling the
condition and consider this value with respect to
the total number of elements which could fulfill
it (including those which fulfill it and those
which do not fulfill it).

Some quantifiers such as “many” and “few” can
be used in either sense, depending on the context
[9].

In [11] absolute fuzzy quantifiers are defined as
fuzzy sets in the positive real numbers and
relative quantifiers as fuzzy sets in the interval
[0,1]. We have extended the definition of
absolute fuzzy quantifiers to all real numbers.
Negative fuzzy quantifiers are not very useful
but, they are useful for queries like: “Give me
those pairs of employees for which if we
subtract their corresponding number of project
we achieve approximately –7”. Negative fuzzy
quantifiers express negative quantities, on
certain domains that could be negative (for
example with subtractions).

Definition 1: A fuzzy quantifier named Q is
represented as a function Q whose domain
depends on whether it is absolute or relative:

[]
[] []1,01,0:

1,0:
→
→ℜ

rel

abs

Q
Q

 (1)

where the domain of Qrel is [0,1] because the
division a/b ∈ [0,1], where a is the number of
elements fulfilling a certain condition and b is
the total number of existing elements.

In order to know the fulfillment degree of the
quantifier over the elements which fulfill a
certain condition, we apply the function Q of the
quantifier to the value of quantification φ (phi):

=Φ
relative is if/
absolute is if

Qba
Qa

 (2)

Thus, the fulfillment degree is Q(φ). If the
function of the quantifier (absolute or relative)
Q(φ), has the value 1, this indicates that this
quantifier is completely satisfied. The value 0
indicates, on the other hand, that the quantifier
is not fulfilled at all. Any intermediate value
indicates an intermediate fulfillment degree for
the quantifier.

Example 1: “Approximately 8” is an absolute
fuzzy quantifier, defined as a triangular and
symmetrical function just like Figure 1a, with
m=8 and margin=2, for example.
“Approximately between 30 and 40 is another
absolute fuzzy quantifier, defined in Figure 1b
as a trapezoidal function with β = 30 and γ = 40.
Sometimes, fuzzy relative quantifier “most” is
represented using the function Q(x) = x, with x
∈ [0,1].

A survey of methods for evaluating quantified
sentences and some new methods are shown
exceedingly well in [4] and [8].

There are two important classic quantifiers: The
universal quantifier (for all, ∀), and the
existential quantifier (exist, ∃). The first of them
is relative and the second one is absolute. They
are discretely defined as:

 =

=∀ otherwise0
1 if1

)(
x

xQ (3)

 =

=∃ otherwise1
0 if0

)(
x

xQ (4)

The existential quantifier may be also defined in
a fuzzy way with a non-discrete trapezoidal
form: [0, 1, ∞, ∞].

3 Fuzzy Quantifiers with Arguments

Some quantifiers (absolute or relative) may have
arguments. The arguments are numbers and the
meaning and definition of the quantifier depends
on these numbers. Most of quantifiers with
arguments are absolute, whereas relative ones
are rare.

Figure 1: a) Triangular Fuzzy Set (Symmetrical).
b) Trapezoidal Fuzzy Set.

b)
1

0 m−margin m m+margin X

1

0 X γ α β δ

a)

Figure 2: Absolute Fuzzy Quantifiers with one
argument (type sum and product):

a) “Much Greater Than x”: [x+1, x+9, ∞, ∞],
b) “About half of x”: [0.25x, 0.5x, 0.5x, 0.75x].

x+1

φ
0

1

x+9 x

a)

0
φ

1

0.25x x/2=0.5x 0.75x

b)

228 Proceedings of IPMU’08

Example 2: Some absolute fuzzy quantifiers
with one and two arguments:

• “Much Greater Than x”: Represented with
function in Figure 2a.

• “About half of x”: Represented with
function in Figure 2b.

• “Approximately between x and y
plus/minus 5” (x < y): Represented with a
trapezoidal function (Figure 1b) with [α, β,
γ, δ] = [x−5, x, y, y+5].

• “Approximately between x and y” (x < y):
Another form more free of context may be
represented with a trapezoidal function
(Figure 1b) with [α, β, γ, δ] = [0.75x, x, y,
1.25y].

• “Approximately between half of x and half
of y” (x < y): Represented with a
trapezoidal function (Figure 1b) with [α, β,
γ, δ] = [0.25x, 0.5x, 0.5y, 0.75y].

In relative quantifiers, we can use expressions
like “half” or “a quarter”, for example. From
these expressions we get a value x ∈ [0,1]
representing them. This value is computed with
the division 1/d, where d is the significant value
in the expression. Thus, the expression “half”
gets x=1/2=0.5, and “a quarter” gets x=1/4=0.25.

Example 3: Some relative fuzzy quantifiers
with one and two arguments:

• “Approximately a x-th part” (x ∈ [0,1]): [α,
β, γ, δ] = [x−0.2, x, x, x+0.2].

• “Less than a x-th part” (x ∈ [0,1]): [α, β, γ,
δ] = [0, 0, x, 1.25x].

• “Approximately between a x-th and a y-th
part” (x < y and x, y ∈ [0,1]). This is a rare
relative quantifier with arguments: [α, β, γ,
δ] = [0.75x, x, y, 1.25y] or [x−0.1, x, y,
y+0.1]. For example, “approximately
between a quarter and the half” is
represented with x = 0.25 and y = 0.5.

• “Approximately between half of a x-th and
half of a y-th part” (x < y and x, y ∈ [0,1]).
[α, β, γ, δ] = [0.4x, 0.5x, 0.5y, 0.6y].

Definition 2: A general classification of
trapezoidal quantifiers [α, β, γ, δ], attending to
its arguments and the building type, is the
following one:
a) Without arguments: See Definition 1.
b) With one argument x:

• Type Product: [α * x, β * x, γ * x, δ * x].

• Type Sum: [α + x, β + x, γ + x, δ + x].
c) With two arguments x and y:

• Type Product: [α * x, β * x, γ * y, δ * y].
• Type Sum: [α + x, β + x, γ + y, δ + y].

In relative quantifiers it is not necessary to
warranty that all values are in [0,1], because the
important is the quantifier definition in [0,1]. If
it is an important condition we can use the
function min. For example a type product
relative quantifier with one argument may be
built as: [min{1, α * x}, min{1, β * x}, min{1, γ
* x}, min{1, δ * x}].

4 Fuzzy Quantifiers in the Data
Dictionary

Fuzzy quantifiers must be stored in the database
data dictionary. Thus, its definition could be
used when it is necessary. However, definition
of each quantifier depends on the object or
context in which it is used. Then, a fuzzy
quantifier is always associated to any of the
following objects: an attribute, a table (or entity)
or the system.

For example, if we look for “employees who
belong to most projects”, quantifier most must
be associated with table of projects, i.e., the
concept of “most projects” depends on the
project entity and its meaning. Although most of
context-dependent quantifiers are associated to a
table, we allow them to be associated to an
attribute or column. The database user could
have defined different fuzzy quantifiers and then
to use the most appropriate for each application.

We call system quantifiers to those quantifiers
with a general definition useful in different
contexts, such as “approximately 2” or "about
half”.

Finally, just like any other database object, each
database user should be able to define his/her
own fuzzy quantifiers or to use those quantifiers
defined by other users (specially the database
administrator).

We propose the following four basic tables for
storing fuzzy quantifiers in the data dictionary of
our database:

4.1 Table FUZZY_LABEL_DEF

This table contains the points that define the
trapezoidal functions associated to labels and
quantifiers. The fields of this table are:

Proceedings of IPMU’08 229

• (OBJ#, COL#, FUZZY_ID): these three
fields identify respectively the table, the
column of this table and the quantifier to be
defined. They are the primary key of this
table and foreign key to the table
FUZZY_OBJECT_LIST, where, as we will
see, the quantifier type is stored.

• ALFA, BETA, GAMMA and DELTA:
these define a trapezoidal possibility
distribution for the quantifier. The
definition depends on the quantifier type.

4.2 Table FUZZY_OBJECT_LIST
This table contains a list of the fuzzy objects that
are defined for the columns of the database,
including each fuzzy quantifier. The attributes of
this table have the following meanings:

• (OBJ#, COL#, FUZZY_ID): The first two
values store the identifier of the owner
column. FUZZY_ID is an identifier for the
fuzzy object, a fuzzy quantifier, a label...

• FUZZY_NAME: the name of the object
without spaces.

• FUZZY_TYPE: the type of the object. It
may be one of the following codes and each
code has an associated object. Codes of
quantifiers begin at ten, because we reserve
the first numbers to other objects (linguistic
labels…). All quantifiers are defined in the
table FUZZY_LABEL_DEF with the
values α, β, γ and δ, but the interpretation
of these values depend on the quantifier
type. See Example 1 and 2 for examples
about these quantifier types:
10 Absolute quantifiers without arguments.

In this case, α, β, γ, δ ≥ 0.
11 Relative quantifiers without arguments.

Now, α, β, γ, δ ∈ [0,1].
12 Absolute quantifiers with one argument

x, type sum. In this case α, β, γ and δ
may be negative, and the final quantifier
is understood to be defined by adding
(or reducing) the argument x to each
value: [α+x, β+x, γ+x, δ+x].

13 Absolute quantifiers with one argument
x, type product. In this case, α, β, γ and
δ are usually in the interval [0,1], and
the final quantifier is understood to be
defined by multiplying each value by
the argument x: [α*x, β*x, γ*x, δ*x].

14 Relative quantifiers with one argument
x, type sum. In this case, α, β, γ and δ

may be negative, and the final quantifier
is understood to be defined by adding
(or reducing) the argument x to each
value: [α+x, β+x, γ+x, δ+x].

15 Relative quantifiers with one argument
x, type product. In this case, α, β, γ and
δ are usually in the interval [0,1]. The
final quantifier is defined by multiplying
each value by the argument x: [α*x,
β*x, γ*x, δ*x].

16 Absolute quantifiers with two arguments
x and y, type sum. Here, α, β, γ and δ
may be negative, and the final quantifier
is defined by: [α+x, β+x, γ+y, δ+y].

17 Absolute quantifiers with two arguments
x and y, type product. Here, α, β, γ and δ
will be usually in the interval [0,1], and
the final quantifier is understood to be
defined by: [α*x, β*x, γ*y, δ*y].

18 Relative quantifiers with two arguments
x and y, type sum. Values α, β, γ and δ
may be negative, and the final quantifier
is understood to be defined by: [α+x,
β+x, γ+y, δ+y].

19 Relative quantifiers with two arguments
x and y, type product. Finally, α, β, γ
and δ will be usually in the interval
[0,1], and the final quantifier is defined
by: [α*x, β*x, γ*y, δ*y].

Some examples are shown in Table 1.

4.3 FUZZY_TABLE_QUANTIFIERS
This table stores the definition of quantifiers
associated to a relation or table (not to an
attribute). These quantifiers are also used in
fuzzy constraints, fuzzy queries, and fuzzy data
mining applications [6][7]. The columns of this
table are:

• OBJ#: this stores the identifier of the table
to which the quantifier is associated.

• FUZZY_NAME: the name of the quantifier
without spaces.

• FUZZY_TYPE: the type of quantifier. This
attribute uses the same codes as the table
FUZZY_OBJECT_LIST for quantifiers.

• ALFA, BETA, GAMMA and DELTA:
these attributes define the trapezoidal fuzzy
quantifier, just like Section 4.2 explains.

The primary key of this table is (OBJ#,
FUZZY_NAME). This indicates that one table
cannot have two quantifiers with the same name,

230 Proceedings of IPMU’08

but the same name can be used in different
tables, and of course, with possibly different
definitions.

4.4 FUZZY_SYSTEM_QUANTIFIERS
This table stores the definition of quantifiers
associated to the system (neither an attribute nor
a table). These quantifiers may be also used in
fuzzy constraints, fuzzy queries, and fuzzy data
mining applications [6][7]. The columns of this
table are:

• FUZZY_NAME: the name of the quantifier
without spaces.

• FUZZY_TYPE: the type of quantifier. This
attribute uses the same codes as the table
FUZZY_TABLE_QUANTIFIERS.

• ALFA, BETA, GAMMA and DELTA:
these define the trapezoidal fuzzy
quantifier.

The primary key of this Table is
(FUZZY_NAME). This indicates that each
system quantifier has a unique name. Table 1
shows an example of this table with interesting
fuzzy quantifiers of each type, where MAX is
the maximum value in the underlying domain
(MAX≡∞).

Some quantifiers are very dependent on the
context, and so they are not good system
quantifiers. System quantifiers should be
relative, or absolute with one or two arguments
and type product (types 11, 13, 14, 15, 17, 18
and 19), because these types are not very
dependent on the context (particularly the
relative quantifiers).

This table should store some default values, but
they must be chosen with care, according to the
database context. Furthermore, there are two
quantifiers (∀ and ∃) which must be
implemented directly in the system: For_all
(or All) and Exists, with the Equations 3 and
4, respectively.

Note that in relative fuzzy quantifiers with
arguments (types 14, 15, 18 and 19), where we
use the expression _xth_part, the argument
should finally be 1/x, because it is relative. For
example, if we want to compute approximately
the 10th part, we must use x = 0.1. We do not
change the quantifier names, because these
names are more expressive.

Table 1: Some Interesting System Quantifiers with 0, 1 and 2 Arguments.

FUZZY_NAME TYPE ALFA BETA GAMMA DELTA Final Quantifier
Fuzzy_Exists 10 0 1 MAX MAX [0, 1, ∞, ∞]
Approx_8 10 6 8 8 10 [6, 8, 8, 10]
Almost_All / Most 11 0.4 0.9 1 1 [0.4, 0.9, 1, 1]
About_Half 11 0.25 0.5 0.5 0.75 [0.25,0.5,0.5,0.75]
Minority 11 0 0 0.1 0.6 [0, 0, 0.1, 0.6]
Much_Greater_Than_x 12 1 9 MAX MAX [1+x,9+x,MAX+x,MAX+x]
About_Half_of_x 13 0.25 0.5 0.5 0.75 [.25x, .5x,.5x, .75x]
Approx_x 13 0.9 1 1 1.1 [0.9x, x, x, 1.1x]
Twice_x / Double_of_x 13 1.75 2 2 2.25 [1.75x, 2x,2x, 2.25x]
Approx_xth_part 14 -0.2 0 0 0.2 [x-0.2, x, x, x+0.2]
Less_Than_xth_part 15 0 0 1 1.25 [0, 0, x, 1.25x]
More_Than_xth_part 15 0.75 1 100 100 [0.75x, x,100x, 100x]
Between_x_and_y 16 -5 0 0 5 [x-5, x, y, y+5]
Approx_Between_x_and_y 17 0.75 1 1 1.25 [0.75x, x, y, 1.25y]
Approx_Between_
Half_x_and_Half_y

17 0.25 0.5 0.5 0.75 [.25x, .5x,.5y, .75y]

Approx_Between_
Twice_x_and_Twice_y

17 1.75 2 2 2.25 [1.75x, 2x, 2y,
2.25y]

Approx_Between_
Xth_and_yth_part

18 -0.1 0 0 0.1 [x-0.1, x, y, y+0.1]

Approx_Between_Half_
Xth_and_Half_yth_part

19 0.4 0.5 0.5 0.6 [0.4x, 0.5x, 0.5y,
0.6y]

Proceedings of IPMU’08 231

5 Applications to Fuzzy Dependencies

Definition 3: We say that relation R verifies an
α–ß Gradual Functional Dependency (GFD)
using F and T, if and only if [2][3]:

∀t1,t2∈ R, F(t1[X],t2[X])≥ α ⇒ T(t1[Y],t2[Y])≥ ß

where F and T are fuzzy relations such as: fuzzy
greater than, fuzzy greater than or equal to,
fuzzy less than, fuzzy equal, etc., like those fuzzy
comparators defined for FSQL [6][7][10].

Often just a few items (objects, tuples or rows)
can prevent the GFD from being completed. To
avoid this, we can relax the universal quantifier
∀ in such a definition. Thus, all the tuples of the
relationship are not forced to fulfill the above
condition. Then, we must define a system to
know how of interesting is one GFD: the
measures of confidence and support:

Definition 4: The confidence c of a GFD is a
value in [0,1]:

{ }
{ }

{ }

≥∈
≥∧≥∈

=≥∈

=

Otherwise;

 [X])t, [X]F(t / t t)t,t(

 [Y])t[Y],T(t [X])t, [X]F(t / t t)t,t(

0; [X])t, [X]F(t / t t)t,t(if 0

21 21,21

2121 21,21

21 21,21

α
βα

α

RCard
RCard

RCard

c

where ∧ is the logical operator AND.

The basic idea consists in computing the
percentage of objects fulfilling the antecedent
and consequent, with respect to those fulfilling
only the antecedent.

Definition 5: The support s of a GFD is the
number of items fulfilling the antecedent and
consequent, with respect to the total number n of
items in R:

{ }

≥∧≥∈

=

=

Otherwise;

 [Y])t[Y],T(t [X])t, [X]F(t / t t)t,t(

0; if 0
2121 21,21

n
RCard

n

s
βα

The GFD concept may be extended with:

Definition 6: A fuzzy Global Dependency
(GD), is a GFD in which the antecedent and the
consequent may be a logic expression, using
AND, OR and NOT, on a set of attributes,
instead of a single attribute with a fuzzy
relation. These expressions may include
constants and fuzzy constants, classic or fuzzy
attributes and for each logic operator (AND, OR
and NOT), we must define the fuzzy

interpretation function (a t-norm, a s-norm and
a negation respectively).

The two measures, confidence and support, are
also available and useful in any GD with similar
definitions.

When one or more constants are associated to
one elected attribute, the GD inference process
avoids the items which do not fulfill such
conditions. In this case, a new concept is useful:

Definition 7: The relative support of a GD is
the number of items fulfilling the antecedent and
consequent, with respect to the total number n of
items fulfilling all the fuzzy conditions with one
constant associated to one elected attribute in
the antecedent.

The relative support measures the support of a
GD in a particular context, not in the whole
database context. The relative support equation
is that on Definition 5 but using the value n of
Definition 7. Obviously, for every GD, the
relative support is greater or equal to the
support.

5.1 Automatically Finding Interesting GD
Summarizing, the system is built implementing
the following four steps: In the first step one
expert in the database context must choose some
interesting attributes for the antecedent and
consequent respectively. For each attribute, the
expert must choose a fuzzy comparator, like
those defined for FSQL [6][7][10], and a
fulfillment threshold for each one. Optionally,
the expert may associate different constants to
some of the elected attributes. These constants
may be fuzzy constants like those defined for
FSQL: fuzzy sets like “approximately 5”, fuzzy
labels like “big”, fuzzy intervals, etc.

When one constant is associated to one elected
attribute, the expert wants to fix this attribute to
that constant. The system only will work with
items fulfilling this kind of (fuzzy) conditions,
and the inference process avoids the other items.
In this case, the relative support is useful.

After that, in an optional second step the expert
may choose a minimum confidence and a
minimum support for the future discovered
dependencies. Instead of such two values, the
expert may choose two relative fuzzy quantifiers
with two fulfillment thresholds for each one.

In the third step, the system will try each
possible combination of the antecedent, with

232 Proceedings of IPMU’08

each possible combination of the consequent.
For each one, the system computes the
confidence and the support. If these values are
greater or equal to the minimum values, or these
values fulfill the relative fuzzy quantifiers with
degrees greater or equal to the respective
fulfillment thresholds, then the GD is said to be
an interesting GD.

In the fourth and last step, the system will show
the discovered interesting global dependencies,
showing the confidence, the support and the
relative support for each one, showing the
fulfillment degree of these three values with
respect to the relative quantifiers in the system.
Thus, we achieve an easy to understand
sentence.

Keep in mind that confidence measures in what
extend the GD is satisfied, and support measures
whether it is satisfied by an enough number of
cases or only for some few ones. Of course, a
strong GD is when confidence and support are 1,
but, generally we must only demand a “big”
confidence, and an “enough” support (or at least
an “enough” relative support).

5.2 Example
Let us suppose a database about reforestations.
In this database, we store data about planting of
forest trees made by different organisms (like
NGO’s), in different climatic conditions,
especially in the Mediterranean area.

For each reforestation we store some attributes
such as: planted species (pines, evergreen oak,
wild olive tree, carob tree, mastic tree…),
plantation date, age of planted trees, number of
planted trees, number of alive specimens after
the first summer and after the second summer,
survival percentage after the first and after the
second summer, amount of irrigations (if they
exist), kind of soil, kind of climatic conditions in
the week of the reforestation or planting
(including temperature, rain and other climatic
measurements), etc.

In our first step, the expert chose the following
conditions for attributes of the antecedent:

• Attribute age of planted trees, with the
fuzzy relation FGT (Fuzzy Greater
Than).

• Attribute amount of irrigations, with the
fuzzy relation FEQ (Fuzzy Equal) and
the fuzzy constant “approximately 0”,
indicating that we are interested in

reforestations with 0, or near 0 artificial
irrigations.

• Attribute rain in the week of the
reforestation, with the FEQ and two
fuzzy constants: “Normal_Rain” or
“Very_Little_Rain”.

The expert set the following conditions for
attributes of the consequent:

• Attribute survival percentage after the
first summer, with FGT.

The expert chose a 0.75 threshold for all the
thresholds. This threshold guaranties a
fulfillment degree not too small.

The system may answer information like the
following, showing the confidence, support and
relative support for each interesting dependency
according to some fuzzy quantifiers stored in the
system. We use only some of the quantifiers
showed on Table 1. Then, one fuzzy dependency
says that: With few irrigation units and during a
period of “Normal_Rain”, the greater age of
planted trees, the lesser survival percentage after
the first summer.

• Confidence: “Most”, with degree 0.95.
• Support: “Approximately the fifth part”,

with degree 0.8, “Most” with 0.2.
• Relative Support: “Most”, with 0.7.

On the other hand, another unexpected
dependency set that: With few irrigation units
and during a period of “Very_Little_Rain”, the
greater age of planted trees, the greater survival
percentage after the first summer.

• Confidence: “Most”, with degree 0.82.
• Support: “Approximately the fourth

part”, with degree 0.8, “Most” with 0.3.
• Relative Support: “Most”, with 0.6.

The first dependency says that supposing few or
none artificial irrigations, if we expect a year of
normal rain, we must plant young trees
(according to the usual planting techniques). The
second dependency sets that in the same
conditions, if we expect a year of very little rain,
we must plant trees as adult as possible.

Conclusions and Future Lines

We have showed one approach for defining and
storing fuzzy quantifiers in a fuzzy database
context, in order to use these quantifiers in fuzzy
queries, fuzzy constraints or fuzzy data mining

Proceedings of IPMU’08 233

applications. This paper defines different kind of
fuzzy quantifiers with zero, one and two
arguments.

This work is linked with the FIRST-2 approach
for designing fuzzy databases and the FSQL
language [6][7][10]. In particular, this definition
is coherent with the approach presented in [1]
for achieving fuzzy databases starting from
classical databases. These works show some
interesting algorithms and ideas addressed to
DBA’s (database administrators) in order to
translate classical databases to fuzzy ones.

Many future research lines arise from here.
Some of them are how to use all these ten types
of fuzzy quantifiers in fuzzy constraints and
fuzzy queries (with FSQL or with other
language or application), to study other possible
types of fuzzy quantifiers with arguments and to
apply fuzzy quantifiers of fuzzy databases in
fuzzy data mining applications. This paper
presents an application to gets fuzzy
dependencies (particularly fuzzy GD) and to
measure, using fuzzy quantifiers, how good
these GD are. We have included an example
about a reforestation database. The example
shows that fuzzy dependencies may be very
useful in a decision support system.

Acknowledgements

This work has been partially supported by the
“Ministry of Education and Science” of Spain
(projects TIN2006-14285 and TIN2006-07262)
and the Spanish “Consejería de Innovación
Ciencia y Empresa de Andalucía” under
research project TIC-1570.

References

[1] Ben Hassine, M.A., Touzi, A.G., Galindo,
J., & Ounelli, H. (2008). How to Achieve
Fuzzy Relational Databases Managing
Fuzzy Data and MetaData. In Galindo, J.
(Ed.), Handbook of Research on Fuzzy
Information Processing in Databases.
Hershey, PA, USA: Information Science
Reference (http://www.igi-pub.com).

[2] R.A. Carrasco, M.A. Vila, J. Galindo, J.C.
Cubero (2000). FSQL: a Tool for Obtaining
Fuzzy Dependencies. 8th International
Conference on Information Processing and
Management of Uncertainty in Knowledge-

Based Systems, IPMU, pp. 1916-1919.
Madrid (Spain).

[3] R.A. Carrasco, M.A. Vila, J. Galindo, J.C.
Cubero (2000). Fuzzy Global Dependencies
in Databases. 10th Congreso Español sobre
Tecnologías y Lógica Fuzzy (ESTYLF), pp.
175-180. Sevilla (Spain).

[4] Delgado M., Sánchez D., Vila M.A. (2000).
Fuzzy Cardinality Based Evaluation of
Quantified Sentences. International Journal
of Approximate Reasoning, 23, pp. 23-66.

[5] Galindo J., Medina J.M., Cubero J. C.,
García M.T. (2001). Relaxing the Universal
Quantifier of the Division in Fuzzy
Relational Databases. International Journal
of Intelligent Systems. Vol. 16-6, June, pp.
713-742.

[6] Galindo, J., Urrutia, A., & Piattini, M.,
(2006). Fuzzy Databases: Modeling Design
and Implementation. Hershey, USA: IDEA
Group.

[7] Galindo, J. (Ed.), (2008). Handbook of
Research on Fuzzy Information Processing
in Databases. Hershey, PA, USA:
Information Science Reference
(http://www.igi-pub.com).

[8] Liétard, L., & Rocacher, D. (2008).
Evaluation of Quantified Statements using
Gradual Numbers. In Galindo, J. (Ed.),
Handbook of Research on Fuzzy
Information Processing in Databases.
Hershey, PA, USA: Information Science
Reference (http://www.igi-pub.com).

[9] Liu Y., Kerre E.E. (1998). “An overview of
fuzzy quantifiers (I). Interpretations” and
“An overview of fuzzy quantifiers (II).
Reasoning and applications”. Fuzzy Sets
and Systems, Volume 95, Issue 1, pp. 1-21
and Issue 2, pp. 135-146.

[10] Urrutia, A., Tineo, L., Gonzalez, C.
(2008). FSQL and SQLf: Towards a
Standard in Fuzzy Databases. In Galindo, J.
(Ed.), Handbook of Research on Fuzzy
Information Processing in Databases.
Hershey, PA, USA: Information Science
Reference (http://www.igi-pub.com).

[11] Zadeh L.A. (1983). A Computational
Approach to Fuzzy Quantifiers in Natural
Languages. Computer Mathematics with
Applications, 9, pp. 149-183.

234 Proceedings of IPMU’08

