
Defaults in Open World Relational Databases

Navin Viswanath
Department of Computer Science,

Georgia State University,
Atlanta, GA 30302

nviswanath1@student.gsu.edu

Rajshekhar Sunderraman
Department of Computer Science,

Georgia State University,
Atlanta, GA 30302

raj@cs.gsu.edu

Abstract

The Open World Assump-
tion(OWA) has been found to
be necessary in a number of appli-
cations. In this paper, we study
the issue of incompleteness in an
open world database. We define an
extension of the relational model
which has two forms of negation
- the explicit negation, in which
certain atoms are known to be false,
and a default negation which is a
form of non-monotonic negation for
unknown atoms in the relation. We
define operators for this extended
relational model. We show that
this model is a generalization of the
relational model in the sense that
we obtain some intuitive answers in
the negative component in addition
to the answers obtained in the
relational model.

1 Introduction

Normally, relational databases adopt the
Closed World Assumption(CWA) of Reiter
[12]. Roughly, the CWA says that given a
query Q (a first order sentence) on a database
DB, the answers to the query are the logical
consequences of DB and Q. Also, we assume
as false those atoms for which no proof exists.
However, there are certain domains of appli-
cation where the CWA does not suffice. A
typical example is a biological database where
it may not be appropriate to assume certain

atoms as being false. It then becomes neces-
sary to study what qualifies as an answer to
a query. In the case where the database is
complete, there is no difficulty. The answers
to a query are those for which a proof exists
given DB. But when the database is incom-
plete, query answering is not that straightfor-
ward. First order logic can no longer be used
and certain non monotonic forms of reasoning
have to be adopted. The major forms of non
monotonic reasoning are Reiter’s CWA [12],
Reiter’s default logic [11], McCarthy’s circum-
scription [8] and Moore’s autoepistemic logic
[9]. Relational databases normally adopt the
CWA. The reason is that the number of neg-
ative facts to be stored become prohibitively
large and storing them explicitly is not fea-
sible. But this becomes necessary in certain
domains of application and when the knowl-
edge is incomplete, a default form of negation
must be used. Logical entailment by itself is
limited in application when the knowledge is
incomplete. But in common sense reasoning,
in practice, we do reason about things that
we are not completely aware of. A typical ex-
ample of such a form of reasoning is the state-
ment “birds fly”.i.e., in general we tend to as-
sume that all birds fly unless we have strong
enough reasons to believe otherwise. Con-
sider a particular bird, say Tweety. We would
normally assume that Tweety flies as long as
we have no reason to believe otherwise. The
pattern of reasoning followed here is “in the
absence of information to the contrary . . . ”.
This form of reasoning is nonmonotonic be-
cause if we were to subsequently acquire infor-
mation to the contrary, then we would have to

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU’08, pp. 212–219

Torremolinos (Málaga), June 22–27, 2008



retract our original beliefs. For example, if we
were to discover at a later point in time that
Tweety is in fact an ostrich, then we would
have to retract our earlier belief that Tweety
flies. This problem has been studied in detail
from the logic programming and deductive
database aspect in [5],[6], [7] and [10]. How-
ever, this problem has not been studied exten-
sively from the open world relational database
viewpoint. In an open world database, some
atoms are explicitly defined and we can make
some common sense assumptions about some
others. The problem that we address here is
to decide about which atoms we can make as-
sumptions within the realm of some of the op-
erators of the relational algebra. The aim of
this paper is to define an extension to the rela-
tional model and an algebra where two forms
of negation are used - an explicit negation and
a nonmonotonic form of negation. We show
that this model is a generalization of the rela-
tional model in the sense that we obtain some
intuitive answers in the negative component
in addition to the answers obtained in the re-
lational model.

The rest of the paper is organized as follows.
Section 2 introduces the notion of default
negation in relational databases. Section 3
formally defines default relations and notions
of operator generalizations. Section 4 presents
the algebraic operators on default relations.
Section 5 explains the intuition behind the
default conclusions. Section 6 presents an
example of query evaluation on default rela-
tions. Finally, Section 7 contains concluding
remarks and directions for future work.

2 Default Negation in a Relational
Database

In relational databases that adopt the CWA,
we store only the true facts and other facts
are implicitly assumed to be false. In an open
world setting, a relation is a pair < R+, R− >,
where R+ is the positive component which
stores facts that are known to be true of the
relation R, and R− is the negative component
which stores facts that are known to be false
in R. Thus, unlike the CWA where we im-

plicitly assume facts not stored to be false, we
do not make such an assumption in the open
world setting. Facts that we believe to be false
are only the ones stored in R−. Such a model
is described in [1],[2]. Bagai and Sunderraman
in [1] and [2] define an algebra for their para-
consistent relational data model which has
these two components. However, apart from
the facts that are known to be false, we also
want to be able to make default assumptions
about certain facts when the relation is in-
complete. The model described in [1] uses the
four-valued logic of Belnap [3] and assigns the
default truth value of unknown to the missing
facts in the relation. Some facts may also ap-
pear in both R+ and R− thus making the re-
lation R inconsistent. Such facts are assigned
the fourth truth value overdetermined.

In this paper, apart from the facts that are
known to be true and those that are known
to be false in a relation R, we adopt a form
of nonmonotonic negation so that some of the
unknown facts can be assumed to be false.
Notice that this is a form of closed world rea-
soning in an open world setting. It is neces-
sary when the database is incomplete. The
form of nonmonotonic reasoning that we will
adopt here is closely related to the one de-
scribed in [13]. The algebra that we define
with two kinds of negation is a generalization
of the paraconsistent algebra of [1] and [2].
Apart from the explicit positive and negative
components of the answers obtained in that
model, we extend it to produce more intuitive
negative answers that we conclude to be false
by default. The basic idea is that we define to
be false by default certain atoms, as yet un-
known, whose addition to the corresponding
relation would not have changed the positive
consequences of the result of applying a rela-
tional operation. It must be noted, however
that adding them to the R− component may
change the negative consequences of the rela-
tional operation.

3 Default Relations

In this section, we construct a set theoretic
formulation of our model. In this model, some

Proceedings of IPMU’08 213



tuples are known to hold a certain underlying
predicate, some are known not to hold the
predicate and some others are not known to
hold the predicate.

Let a relation scheme Σ be a finite set of at-
tribute names, where for any attribute name
A ∈ Σ, dom(A) is a non-empty domain of
values for A. A tuple on Σ is a map t : Σ →
∪A∈Σdom(A), such that t(A) ∈ dom(A), for
each A ∈ Σ. Let τ(Σ) denote the set of all
tuples on Σ.

Definition 1 An ordinary relation on
scheme Σ is any subset of τ(Σ). We let O(Σ)
denote the set of all ordinary relations on Σ.

Definition 2 A default relation on scheme Σ
is a triple < R+

e , R−
e , R−

d > where R+
e ,R−

e and
R−

d are any subsets of τ(Σ). We let D(Σ)
denote the set of all default relations on Σ.

Here, the subscript e denotes explicit and
the subscript d denotes default. The super-
scripts + and - denote true and false respec-
tively. Hence the three components are ex-
plicitly true, explicitly false and default false
respectively.

Intuitively, R+
e may be considered as the set

of tuples for which R is known to be true, R−
e

is the set of tuples for which R is known to
be false and R−

d is the set of tuples for which
R is not known to be true and hence can be
assumed to be false by default.

We denote by R̄ the set of tuples on scheme
Σ that have not been assigned truth values.
Thus R̄ = τ(Σ) − (R+

e ∪ R−
e ∪ R−

d ). We say
that a tuple t is unknown in R if t ∈ R̄.

Definition 3 A default relation R on scheme
Σ is said to be complete if R+

e ∪ R−
e = τ(Σ).

R is said to be a consistent default relation if
R+

e ∩ R−
e = ∅ and R+

e ∩ R−
d = ∅. If R is both

consistent and complete, it is said to be total.

It should be observed that the (positive parts
of) total relations are essentially ordinary re-
lations. We make this relationship explicit by
defining an operator λΣ(R) =R+

e where R is
a total relation on Σ.

Default relations are a generalization of ordi-

nary relations in the sense that for each ordi-
nary relation there is a default relation with
the same information content. We adopt the
notions of generalizations discussed in [1].

An n-ary operator on ordinary relations with
signature < Σ1, . . . ,Σn+1 > is a function
Θ : O(Σ1) × . . . × O(Σn) → O(Σn+1) where
Σ1, . . . ,Σn+1 are any schemes. Similarly, an
n-ary operator on default relations with sig-
nature < Σ1, . . . ,Σn+1 > is a function Ψ :
D(Σ1)× . . .×D(Σn) → D(Σn+1).

Definition 4 An operator Ψ on default re-
lations with signature < Σ1, . . . ,Σn+1 >
is totality preserving if for any total rela-
tions R1, . . . , Rn on schemes Σ1, . . . ,Σn re-
spectively, Ψ(R1, . . . , Rn) is also total.

We associate with a consistent default rela-
tion R the set of all relations obtainable from
R by throwing in the missing tuples. The
completion of a consistent default relation R
is given by,
compsΣ(R) = {Q ∈ O(Σ) | R+

e ⊆ Q ⊆
τ(Σ)− (R−

e ∪R−
d )}

For any operator Θ : O(Σ1)× . . .×O(Σn) →
O(Σn+1) on ordinary relations, we let
Γ(Θ) : 2O(Σ1) × . . .× 2O(Σn) → 2O(Σn+1) be a
map on sets of ordinary relations defined as
follows: For any sets M1, . . . ,Mn of ordinary
relations on schemes Σ1, . . . ,Σn respectively,
Γ(Θ)(M1, . . . ,Mn) = {Θ(R1, . . . , Rn) | Ri ∈

Mi,∀i, 1 ≤ i ≤ n}.

Definition 5 An operator Ψ on default re-
lations with signature < Σ1, . . . ,Σn+1 >
is consistency preserving if for any consis-
tent default relations R1, . . . , Rn on schemes
Σ1, . . . ,Σn respectively, Ψ(R1, . . . , Rn) is also
a consistent default relation.

Definition 6 A consistency preserving op-
erator Ψ on default relations with signature
< Σ1, . . . ,Σn+1 > is a strong generalization
of an operator Θ on ordinary relations with
the same signature, if for any consistent
relations R1, . . . , Rn on schemes Σ1, . . . ,Σn

respectively, we have
compsΣn+1(Ψ(R1, . . . , Rn)) =
Γ(Θ)(compsΣ1(R1), . . . , compsΣn(Rn)).

214 Proceedings of IPMU’08



4 Algebraic Operators on Default
Relations

In this section, we present generalizations of
each of the algebraic operators on ordinary
relations. To reflect generalization, a dot is
placed over the ordinary relational operator to
obtain the corresponding default relation op-
erator. The operators defined here are exten-
sions of the operators defined in the paracon-
sistent data model in [1] and [2]. We also state
theorems on strong generalization for each of
the operators. The proofs are avoided due to
space constraints.

Definition 7 Let R and S be default rela-
tions on scheme Σ. The union of R and S,
denoted R∪̇S, is a default relation on scheme
Σ, given by,

(R∪̇S)+e = R+
e ∪ S+

e
(R∪̇S)−e = R−

e ∩ S−e
(R∪̇S)−d = R−

d ∩ S−d

The union operation may be understood as
follows: The tuples in the union of R and S
are those that possess either the property R
or the property S, which is simply the union
of the tuples in R+

e and S+
e . Similarly, the ex-

plicit negation of the union is the tuples which
have neither property. They are exactly the
tuples in R−

e ∩ S−e . The tuples not known to
possess property R or S are those that are
not known to possess either - which is exactly
the set R−

d ∩S−d . Among the unknown tuples
in R̄ and S̄, any of those, if added to either
of the original relations, would be present in
the union as well. Hence none of them can be
negated by default.

Theorem 4.1 The operator ∪̇ on default re-
lations is a strong generalization of the oper-
ator ∪ on ordinary relations.

Definition 8 Let R and S be default rela-
tions on scheme Σ. The intersection of R
and S, denoted R∩̇S, is a default relation on
scheme Σ, given by,

(R∩̇S)+e = R+
e ∩ S+

e
(R∩̇S)−e = R−

e ∪ S−e
(R∩̇S)−d = R−

d ∪ S−d ∪ (R̄ ∩ S̄)

For the intersection operation, the positive
component of the intersection will contain ex-
actly those tuples which possess both prop-
erties R and S. These are the tuples in R+

e

∩ S+
e . The tuples in the explicit negative

component are those for which it is not the
case that they possess properties R and S.
i.e. those tuples that either do not possess R
or do not possess S. These are the tuples in
R−

e ∪ S−e . The default negative tuples are
those tuples that are not known to possess R
and S. They include the tuples in R−

d ∪ S−d .
Apart from these, any tuple in R̄ which does
not appear in S+

e will not appear in the in-
tersection even if it were added to R. It will
appear in the explicit negative component of
the intersection if it was present in S−e . Thus
we are interested only in tuples that appear
in R̄ ∩ S̄ . Notice that this holds only if these
tuples were to be added separately in R or S.
For if any tuple in R̄ ∩ S̄ were to be added
to both R and S simultaneously, this tuple
would appear in the intersection as well.

Theorem 4.2 The operator ∩̇ on default re-
lations is a strong generalization of the oper-
ator ∩ on ordinary relations.

Definition 9 Let R and S be default rela-
tions on scheme Σ. The difference of R and
S, denoted R−̇S, is a default relation on
scheme Σ, given by,

(R−̇S)+e = R+
e ∩ S−e

(R−̇S)−e = R−
e ∪ S+

e
(R−̇S)−d = R−

d ∪ (R̄ ∩ S̄) ∪ (S̄ −R−
e )

The tuples in the difference of R and S are
those that are in R and not in S. i.e., in R+

e

∩ S−e . The tuples that are known not to
be present in the difference are exactly those
that are not in R or in S - the tuples in R−

e ∪
S+

e . Any tuple not known to be in R can be
assumed to not be in the difference - this is the
set R−

d . Any tuple in R̄ ∩ S̄ would not affect
the result of the difference if it were to be
added to R or S. Hence they can be assumed
to be false by default. Also, the tuples in S̄
would not affect the difference even if they
were to be added to S. However, some of
them already appear in the explicit negative
component because they are present in R−

e .

Proceedings of IPMU’08 215



Thus the tuples from S̄ that can be assumed
to false in the difference are those in S̄ − R−

e

.

Theorem 4.3 The operator −̇ on default re-
lations is a strong generalization of the oper-
ator − on ordinary relations.

If Σ and ∆ are relation schemes such that
∆ ⊆ Σ, then for any tuple t ∈ τ(∆) we let
tΣ denote the set {t′ ∈ τ(Σ) | t′(A) = t(A),
for all A ∈ ∆} of all extensions of t. We ex-
tend this notion for any T ⊆ τ(∆) by defining
TΣ =

⋃
t∈T tΣ.

Definition 10 Let R be a default relation on
scheme Σ and let F be any formula involving
attribute names in Σ, constant symbols (de-
noting values in the attribute domains), the
equality symbol =, the negation symbol ¬, and
the connectives ∧ and ∨. Then, the selection
of F by R, denoted σ̇F (R), is a default rela-
tion on scheme Σ, given by

σ̇F (R)+e = σF (R+
e )

σ̇F (R)−e = R−
e ∪ σ¬F (τ(Σ))

σ̇F (R)−d = R−
d

The positive component of the selection con-
sists of exactly those tuples in R+

e that sat-
isfy F . i.e. the tuples that possess property
R and satisfy the formula F . The explicitly
negated component of a selection includes the
set of all tuples in R−

e since they do not pos-
sess property R. Also, tuples in τ(Σ) that do
not satisfy F are also explicitly negated. The
tuples in R−

d can be assumed to be false in the
selection since they are not known to possess
property R.

Theorem 4.4 The operator σ̇ on default re-
lations is a strong generalization of the oper-
ator σ on ordinary relations.

Definition 11 Let R be a default relation on
scheme Σ, and ∆ ⊆ Σ. Then, the projection
of R onto ∆, denoted π̇∆(R), is a default re-
lation on ∆, given by

π̇∆(R)+e = π∆(R+
e )

π̇∆(R)−e = {t ∈ τ(∆) | tΣ ⊆ R−
e }

π̇∆(R)−d = {t ∈ τ(∆) | tΣ ⊆ (R−
d ∪R−

e )}
−π̇∆(R)−e

The positive component of the projection is
the projection of tuples in R+

e . The explic-
itly negated component of the projection is
those tuples in ∆ all of whose extensions are
explicitly negated in R. Similarly, the tuples
that are unknown in ∆ all of whose extensions
are in R−

d can be assumed to be false in the
projection. Apart from this, there may be tu-
ples unknown in ∆ some of whose extensions
are in R−

e and the others in R−
d . These tuples

can also be assumed to be false by default.

Theorem 4.5 The operator π̇ on default re-
lations is a strong generalization of the oper-
ator π on ordinary relations.

Definition 12 Let R and S be default rela-
tions on scheme Σ and ∆ respectively. Then,
the natural join of R and S, denoted R.̇/S, is
a default relation on scheme Σ ∪∆, given by

(R.̇/S)+e = R+
e ./ S+

e
(R.̇/S)−e = (R−

e )Σ∪∆ ∪ (S−e )Σ∪∆

(R.̇/S)−d = (R−
d )Σ∪∆ ∪ (S−d )Σ∪∆∪

{tΣ∪∆ | (t ∈ R̄ ∧ {t} ./ S+
e = ∅)∨

(t ∈ S̄ ∧R+
e ./ {t} = ∅)}

The positive component of the join is simply
the natural join of the positive components
of the corresponding relations. The explicitly
negated component of the join consists of all
extensions of the tuples in R−

e and S−e since
these are already not true in R and S respec-
tively. The default negative component con-
sists of all extensions of R−

d and S−d . This
component will also contain extensions of tu-
ples in R̄ that do not join with any tuple in
S+

e . Similarly, we can also add all tuples from
S̄ that do not join with any tuple in R+

e .

Theorem 4.6 The operator .̇/ on default re-
lations is a strong generalization of the oper-
ator ./ on ordinary relations.

5 Intuition

The aim of this section is to explain the in-
tuition behind how the default conclusions
are made for each of the relational operators.
Since the semantics of each of the relational
operators is clear, we know what kind of in-
ferences can be made at least as far as the

216 Proceedings of IPMU’08



positive conclusions are concerned. For ex-
ample, we know that the union of two rela-
tions is exactly those set of tuples that are
known to have either property. In order to
derive default conclusions, we are motivated
by two reasons - one, we want to minimize
the extent of a relation. This is the idea
behind nonmonotonic reasoning methods like
circumscription [8]. Thus we attempt to de-
rive default negative conclusions in order to
minimize the result of an algebraic operation.
The question that then arises is on what ba-
sis do we minimize? As mentioned earlier,
since the semantics of the relational operators
are clear, an interesting approach would be to
treat this as the definite result of applying the
particular relational operator and try to min-
imize the relation as much as possible while
maintaining consistency without introducing
any change in the definite answers.This is the
second motivation for deriving default con-
clusions. This approach leads to the obvi-
ous question - why not negate every unknown
fact as in the CWA? The reason that this ap-
proach is unsatisfactory is that we want to
differentiate between two kinds of negation in
an open world database. The explicit nega-
tion component is the set of tuples whose fal-
sity has been constructively established. The
default negation component is the set of tu-
ples whose falsity can be assumed. The need
for distinguishing between these two forms of
negation has been studied extensively from
the logic programming perspective. In par-
ticular, PROLOG’s negation operator not is
a nonmonotonic form of negation based on the
negation as failure rule due to Clark [4].

Most default assumptions are made on the in-
ference “in the absence of any information to
the contrary, assume . . . ”. Our attempt here
is to find a formalization of this principle in
relational databases. For the relational oper-
ators, since our effort is to minimize the re-
sulting relation, we assume that a tuple is not
in the result of a relational operation unless
we have good enough reasons to believe other-
wise. Since both the explicit positive and neg-
ative components of the result of a relational
operation are defined as functions of the cor-

responding components of the input relations,
for each tuple that is unknown in the input
relations, we assume the tuple to be in the re-
lation and then compute the result. If there is
no change in the result, then we conclude that
the tuple can be negated by default in the re-
sult. For the purpose of illustration, consider
a default relation R and the selection of R by
a formula F . The positive component of the
selection is defined in terms of R+

e . Among
the tuples that are unknown in R, there are
some for which F holds and others for which
it does not. Consider the tuples for which F
does not hold. Even if they were to be in R,
the result of selection would be the same since
F does not hold for them. Hence these are the
only tuples in R̄ that can be negated by de-
fault. Notice here that this form of negation
is stronger than the CWA since the CWA dic-
tates that all tuples for which R does not hold
are assumed to be false. Since we are dealing
with the open world assumption we need a
stronger notion of negation.

6 Query Example

In this section, we present an example of
query evaluation on default relations. Con-
sider the database shown in Fig 1. This
is an instance of a hospital database with
two relations Patient(pname,symptom) and
Disease(dname,symptom) which records
patient and disease names and their corre-
sponding symptoms. Assume the following
domains for each of the attributes:
dom(pname) = {Tom, Ann, Jack}
dom(symptom) = {Forgetfulness, Nausea,

Sneezing, Headache}
dom(dname) = {Cold, Alzheimer’s,

Jaundice}
Since this is a toy example, we will make
the simplifying assumption that if a patient
shows symptoms of a disease then he suffers
from the disease although this may not
be the case in reality. For each relation
in the database, in the table representing
the relation, we use a horizontal line to
differentiate between the components R+

e

, R−
e and R−

d in that order. An empty
component is denoted using ∅. In this
instance, we assume that the R−

d component

Proceedings of IPMU’08 217



is empty for both the Patient and Disease
relations. Consider the following query to the
database: Which patients suffer from
Alzheimer’s disease? The query can be

Patient
pname symptom
Tom Forgetfulness
Jack Headache
Tom Nausea
Jack Nausea
Jack Forgetfulness
Ann Forgetfulness
Ann Sneezing
Ann Headache
Ann Nausea

∅
Disease

dname symptom
Cold Headache

Alzheimer’s Forgetfulness
Jaundice Nausea

Alzheimer’s Headache
Jaundice Forgetfulness

∅
Figure 1: An instance of a hospital database

expressed in relational algebra as follows:
Temp(pname,symptom,dname)=
σ̇<dname=‘Alzheimer′s′>(Patient.̇/Disease)
Answer(pname)=π̇<pname>(Temp)

Fig. 3 shows the tables Temp and Answer.

In the above example, we obtain Tom as an
explicit positive answer, Ann as an explicit
negative answer and Jack as a default nega-
tive answer. The tuples highlighted in bold
font are the answers that are obtained with
the default relations in addition to the oth-
ers that may be obtained with the paracon-
sistent model. Notice that with the ordinary
relational model we would have obtained Tom
as the only answer to the above query, with
the paraconsistent data model [1] we would
have obtained Tom and Ann as positive and
negative answers respectively, but we would
not have been able to arrive at any conclu-
sions about Jack. However, with default rela-
tions, we are able to obtain Jack as a default
false answer. We first investigate why Jack
does not appear in the explicit negative com-
ponent of the answer even though headache is
not a symptom of Alzheimer’s disease. To ob-

Temp
pname symptom dname
Tom Forgetfulness Alzheimer’s
Jack Headache Cold
Tom Nausea Alzheimer’s
Tom Nausea Cold
Tom Nausea Jaundice
Jack Nausea Alzheimer’s
Jack Nausea Cold
Jack Nausea Jaundice
Jack Forgetfulness Alzheimer’s
Jack Forgetfulness Jaundice
Jack Forgetfulness Cold
Ann Forgetfulness Alzheimer’s
Ann Forgetfulness Jaundice
Ann Forgetfulness Cold
Ann Nausea Alzheimer’s
Ann Nausea Cold
Ann Nausea Jaundice
Ann Headache Alzheimer’s
Ann Headache Cold
Ann Headache Jaundice
Ann Sneezing Alzheimer’s
Ann Sneezing Jaundice
Ann Sneezing Cold
Jack Headache Alzheimer’s
Tom Headache Alzheimer’s
Tom Forgetfulness Jaundice
Tom Sneezing Alzheimer’s
Tom Sneezing Jaundice
Tom Sneezing Cold
Jack Sneezing Cold
Jack Sneezing Alzheimer’s
Jack Sneezing Jaundice
Tom Forgetfulness Cold
Tom Headache Cold
Tom Headache Jaundice
Jack Headache Jaundice

Answer
pname
Tom
Ann
Jack

Figure 2: The result of the query

218 Proceedings of IPMU’08



tain Jack as an answer in the explicit negative
component, we require that all tuples involv-
ing Jack after the join and selection appear in
the negative component. Since there is no in-
formation on whether Jack shows symptoms
of sneezing, no information regarding this will
appear in the explicit components of the join.
However, the tuples <Jack,Sneezing,Cold>
and <Jack,Sneezing,Jaundice> will appear
in the explicit negative component as a re-
sult of selection in the paraconsistent model.
The tuple <Jack,Sneezing,Alzheimer’s>
will still not appear since the selection in-
volves Alzheimer’s disease. But in the de-
fault model, since sneezing is not mentioned
as a symptom of any disease, it can be
assumed to be false by default(adding any
such tuple will not change the result of the
join). Now after the selection, we have com-
plete information about Jack since the tu-
ple <Jack,Sneezing,Alzheimer’s> appears
in the false by default component and hence
it appears in this component in the projec-
tion.

7 Conclusion and Future Work

In this paper we have introduced a data model
based on the relational model. We show that
default relations are a generalization of the re-
lational data model. This extension allows us
to arrive at certain default conclusions apart
from the positive conclusions we obtain from
the relational model and the positive and neg-
ative conclusions obtained from the paracon-
sistent relational data model. We have shown
that the default relations allow us to arrive at
more intuitive answers by way of an example.

In the future, we aim to extend this model to
include other forms of incompleteness such as
disjunctions.

References

[1] Rajiv Bagai and Rajshekhar Sunderra-
man. A paraconsistent relational data
model. International Journal of Com-
puter Mathematics, 55(3), 1995.

[2] Rajiv Bagai and Rajshekhar Sunder-
raman. Bottom-up computation of
the fitting model for general deductive
databases. Journal of Intelligent Infor-
mation Systems, 6(1):59–75, 1996.

[3] N. D. Belnap. A useful four-valued logic.
In G. Eppstein and J. M. Dunn, edi-
tors, Modern Uses of Many-valued Logic,
pages 8–37. Reidel, Dordrecht, 1977.

[4] K. L. Clark. Negation as failure. In M. L.
Ginsberg, editor, Readings in Nonmono-
tonic Reasoning, pages 311–325. Kauf-
mann, Los Altos, CA, 1987.

[5] Michael Gelfond and Vladimir Lifschitz.
Classical negation in logic programs and
disjunctive databases. New Generation
Computing, 9(3/4):365–386, 1991.

[6] John Grant and V. S. Subrahmanian.
Reasoning in inconsistent knowledge
bases. IEEE Trans. Knowl. Data Eng.,
7(1):177–189, 1995.

[7] J.Grant and V.S. Subrahmanian. Appli-
cations of paraconsistency in data and
knowledge bases. Synthese, 125:121–132,
2000.

[8] John McCarthy. Circumscription—a
form of non-monotonic reasoning. Artifi-
cial Intelligence, 13:27–39, 1980.

[9] Robert C. Moore. Semantical consider-
ations on nonmonotonic logic. Artif. In-
tell., 25(1):75–94, 1985.

[10] Shamim A Naqvi. Negation as failure for
first-order queries. In PODS ’86, pages
114–122. ACM Press, 1986.

[11] R. Reiter. A logic for default reasoning.
In Readings in nonmonotonic reasoning,
pages 68–93. Morgan Kaufmann, 1987.

[12] R. Reiter. On closed world data bases.
In Readings in nonmonotonic reasoning,
pages 300–310. Morgan Kaufmann, 1987.

[13] Marek A. Suchenek and Rajshekhar Sun-
derraman. On reasoning from closed
world databases with disjunctive views.
In LPNMR, pages 132–149, 1990.

Proceedings of IPMU’08 219


