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Abstract

Using category theory a mathematical
analysis of chance is presented. Laws
of chance are defined as properties that
are time and uncertainty invariants. It is
shown that proofs, interpreted into sets
of observables, are laws of chance.

Key words: proof theory, topos theory,
reasoning under uncertainty.

1 Introduction

Although the motivations of this work are founda-
tional, we believe that there are many links with
arguments of interest in the field of Information
Processing and Management of Uncertainty. 1

This is due to the following observation: chance
is at the root of information processing under un-
certainty, and the analysis of the symmetries of
chance is the cornerstone of the work. Uncer-
tainty can be seen as the theory of limit proper-
ties of chance, for instance a probability measure
is associated to an infinite set of data generated
by chance. In many cases some explicit knowl-
edge about the probability measure that governs
the process is assumed.

Aim of this work is to show that the rules of logic
are laws of chance. To prove this we must give a
mathematical definition of law of chance.

1This paper originates from the suggestions of the re-
viewers of three papers [6, 7, 8] submitted to the IPMU-
08 conference. Aim of this work is to give, in an
informal way, the motivations and explanations of the
theory presented in the three papers, where the inter-
ested reader can find all the mathematical definitions and
proofs. [6, 7, 8] can be downloaded at the following ad-
dress:http://www.isib.cnr.it/infor/papers/stat.pdf

Once we arrive at this definition, we discover a
method that computes directly with finite sets of
data generated by chance without any assumption
about the unknown measure µ0 that governs the
process. Such method, as we will see, is strong
enough to prove its own consistency.

The following facts are assumed:

1) to every finite set of data x we can associate
an empirical measure σx that does not necessarily
coincide with the measure µ0.

2) at the limit, i.e. if we could know an infinite set
of data, the measures associated to the infinite sets
of data coincide with µ0. Nonetheless infinite sets
of data are not available, hence µ0 remains always
unknown.

For instance assume that x is generated by a coin-
tossing experiment, then the Glivenko-Cantelli
theorem gives us the method that satisfies the
above facts. Nonetheless if we cannot assume that
the coin is fair, using a finite set of outcomes we
do not know µ0. Moreover, in many cases, the
empirical measure associated to x does not co-
incide with µ0. Even worse, using only a finite
number of outcomes, and without any hypothesis
about µ0, we do not know whether at least one of
the observed empirical measures coincides with
µ0. This is the typical situation analyzed in this
work: how can we compute, in a sound way, with
the available data, i.e. finite sets of outcomes, as-
suming nothing about the measure µ0?

2 Proofs and observables

To find a method to compute in a sound way with
finite sets of data (without any knowledge about
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µ0) we must start from some general properties
of chance that hold for every set of data x and
whatever will be the measure µ0.

A first general property of chance stems from the
following observation: information coming from
finite sets of observables has a polarity. Whatever
will be µ0, for every x there are only two possi-
bilities:

1) x gives positive information w.r.t. µ0 if σx ap-
proximates µ0, i.e. µ0 = σx

2) x gives negative information w.r.t. µ0 if σx
does not approximate µ0, i.e. µ0 6= σx.

Given a pair of observables x, y the same situa-
tion applies: x gives positive information w.r.t y
if σx = σy (shortly xSTATy), otherwise x gives
negative information w.r.t y if σx 6= σy (shortly
xTESTy).

From this simple observation we can derive the
fundamental relation: two observables x, y, are
positively-coherent iff xSTATy otherwise they
are negatively-coherent iff xTESTy.

This is not a novelty, in fact in statistics we have
methods that use the available data to approxi-
mate a measure and other methods, usually called
tests, that use the available data in a dual way, i.e.
to exclude a measure.

The novelty, to our knowledge, stays in a method
that combines the two sources of information:
positive and negative.

To find this method we need logic. More pre-
cisely linear logic, because, as we will see, in lin-
ear logic the link between reasoning (proof the-
ory) and computing (typed lambda calculus) is at
the root of the formalism. This link is the key for
a method that computes directly with data. It is
worth noting that classical and intuitionistic logic
can be translated into linear logic (see [3, 4]).

To proceed in the analysis we must specify what
we mean by sets of data. To this aim let us intro-
duce the concept of experiment.

An experiment is a stochastic process X =
{Xn}n∈N with a method σX that associates to
every trajectory x, or observable of the process,
a measure σXx . An observable x is a finite set of
outcomes, i.e. x = {X0(ξ), ...Xn(ξ)}. By set of

data we mean an observable of a stochastic pro-
cess.

To simplify the discussion we assume that all the
random variables are measurable w.r.t. a Boolean
field of sets B defined over a set Ξ.

To every stochastic process X it is associated
a family of fields of sets over a set Ξ, FX =
{FX

n }n∈N , with FX
n ≤ FX

m if n ≤ m, called
filtration. It is a well known fact that the filtra-
tion FX contains all the information of the pro-
cess X (see [1]). The filtration can be a com-
plex structure, but for simple processes we can
give some examples. For instance, in figure 1
the filtration associated to a fair coin experiment
is represented. To construct the filtration take
Ξ = [0, 1] and divide the interval into four equal
parts p1,..p4. For ξ ∈ p1 let X0(ξ) = h, while
for ξ ∈ p2 let X0(ξ) = t, and so on. This defines
FX

0 . For FX
1 divide every pi into two equal parts

and proceed as above.

Given two stochastic processes X , Y we can de-
fine a new process X×Y , called the product pro-
cess, described by the filtration obtained by the in-
tersection of the two filtrations. It is not difficult
to see that every FX

n is atomic, the atoms being
the sets X−1

n (Xn(ξ)), ξ ∈ Ξ, hence we can de-
fine FX×Y

n as the algebra generated by the atoms
X−1
n (Xn(ξ)) ∩ Y −1

n (Yn(ξ)), ξ ∈ Ξ. In figure
2 we have depicted the filtration obtained as the
product experiment of a coin experiment with a
urn experiment where the urn contains an equal
number of red, white and black balls.

We can combine dependent or independent exper-
iments. In this paper, due to the lack of space, we
will analyze the case of independent experiments.
The full case with dependent experiments can be
found in [6, 7, 8].

If X and Y are independent then we can assume
that the measure that governs the combined exper-
iment is the product measure of the two measures
that govern the single experiments. Therefore we
obtain the definition of product experiment: the
process is the product process and the method as-
sociates to every pair of observables xy the prod-
uct measure, i.e. σX×Yxy = σXx × σYy .

Summing up we have assumed a second general
property of chance: independent experiments are
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governed by the product measure.

Now we have a sufficient number of chance sym-
metries to discover a sound method that computes
sets of observables from finite sets of observables.

For every experiment X the set of all observables
will be denoted by |X|, moreover we assume that
for every experiment we have observed x ∈ |X|.
The key idea is the definition of coherence be-
tween observables. Here the definition is given
in an intuitive form; for the exact definition see
[6, 7, 8].

If P is an atomic experiment then x, y ∈ |P |
are coherent (written xSTATP y) iff σPx = σPy ,
while they are incoherent (written xTESTP y) iff
σPx 6= σPy . Negation is defined using the TEST
relation: for instance, the negation of P , written
P⊥, is defined as xSTATP⊥y iff xTESTP y.

This is a novelty: we have a method that uses,
in a unique framework, positive and negative in-
formation. It is also evident that logic is the nat-
ural environment where this important symmetry
of chance can be represented.

For compound experiments let us recall that two
product measures are equal iff their components
are equal (sse [5]), hence xySTATX×Y x′y′ iff
σX×Yxy = σX×Yx′y′ iff σXx = σXx′ and σYy = σYy′ iff
xSTATXx

′ and ySTATY y′.

Moreover xyTESTX×Y x′y′ iff σX×Yxy 6= σX×Yx′y′

iff σXx 6= σXx′ or σYy 6= σYy′ iff xTESTXx′ or
yTESTY y

′.

This gives us a sufficient machinery to discover a
logic behind the notion of coherence defined us-
ing the two above-mentioned general properties
of chance.

The idea is the following: to every atomic propo-
sition P we can associate an experiment ε(P )
with the STATε(P ) relation; to the negation of the
atomic proposition P we can associate the same
experiment with the TESTε(P ) relation, hence
xSTATε(P⊥)x

′ iff xTESTε(P )x
′. To the formula

φ ⊗ ψ (i.e. φ and ψ ) we can associate the prod-
uct experiment with the corresponding coherent
relation. To the formula φOψ (i.e. φ or ψ) we
can associate the product experiment with the co-
herent relation defined as xySTATε(φOψ)x

′y′ iff
xySTATε((φ⊥⊗ψ⊥)⊥)x

′y′. Implication is defined

as: φ ( ψ = φ⊥Oψ.

Using the above ideas we can associate to every
formula φ an experiment ε(φ) and a coherence re-
lation STATε(φ). A set of observables of ε(φ)
that are coherent w.r.t. the available observable
x ∈ ε(φ) is called a stochastic clique (denoted
by aφx). It is possible to prove (see [6, 7, 8]) that
every proof π of a formula φ (`π φ) constructs
a stochastic clique. This shows that the objects
that describe the above stochastic properties are
the same as those that describe proofs in the de-
notational semantics of logic.

Now let us see how to construct a method, based
on the above symmetries of chance, that trans-
forms directly sets of observables into sets of ob-
servables in a sound way.

Assume that `π φ ( ψ, then π constructs a
stochastic clique aφ

⊥Oψ
xy made of observables that

are coherent w.r.t. the available observables x and
y. Let b be a coherent set of observables of |ε(φ)|,
i.e. for every x, x′ in b it holds xSTATε(φ)x

′.

Let c = {y : y ∈ |ε(ψ)| ∧ (∃x)(xy ∈ aφ
⊥Oψ
xy )}.

It is easy to see that c is a coherent set of observ-
ables of |ε(ψ)|. In fact if y, y′ ∈ c then there exist
x, x′ s.t. xy ∈ aφ

⊥Oψ
xy and x′y′ ∈ aφ

⊥Oψ
xy . From

this and from the fact that aφ
⊥Oψ
xy is a stochas-

tic clique we have that xySTATε(φ⊥Oψ)x
′y′ iff

xSTATε(φ⊥)x
′ or ySTATε(ψ)y

′. But x, x′ ∈ b
hence xSTATε(φ)x

′ i.e. not xSTATε(φ⊥)x
′, and

from this it follows that ySTATε(φ)y
′. Using this

observation, we can construct a function f , de-
fined, as above, f(b) = c, for every coherent set
of observables b of |ε(φ)|. Such function f trans-
forms coherent sets of observables into coherent
sets of observables. These functions, called lin-
ear functions, give the name to linear logic. They
are the bridge between logic and computation, in
fact linear functions allow us to use implications
as models of lambda terms of the form λxt.

3 The category of chance

We have seen that the above machinery is based
on the available observables x, y.... Hence also
negation and the connectives depend on the avail-
able information, for instance changing x the
corresponding xSTATx and xTESTx relations
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change and hence also the stochastic cliques aφx
used to give meaning to proofs and from this all
the machinery. We have assumed that the avail-
able information is given by finite sets of data,
hence we have no idea of the measure that gov-
erns the process. For instance if we flip twice a
coin and get ht, in this information state, we be-
lieve that the coin is fair and hence the probability
of head equals the probability of tail. If we now
flip again the coin, whhichever will be the out-
come we will change our idea of the measure that
governs the process.

At this point we have to prove that the method re-
mains sound also in the presence of this variabil-
ity of information. To show this we need a formal
definition of law of chance, i.e. properties that do
not depend on x or µ0. For this definition we need
category and topos theory. Let us try to justify the
choice of this complex mathematical theory.

To show the soundness of the method it is suf-
ficient to prove that the objects constructed by
proofs, i.e. the interpretations of proofs, do not
depend on the available information: the observed
data. This can be done showing that these objects
do not change if the available information varies,
i.e. they are laws of chance. Therefore the start-
ing point, from a mathematical perspective, is the
description of chance as it acts or transforms the
observables. Once we have this mathematical de-
scription it remains to show that the interpreta-
tions of proofs do not vary w.r.t. these transfor-
mations.

In category theory, mathematical properties are
described up to morphisms, that means w.r.t. their
transformations. For instance in algebra mathe-
matical properties of groups are described defin-
ing the properties of group operations, i.e. as-
sociativity with neuter element... In the cate-
gorical definition of group all is defined w.r.t.
the transformations that preserve the properties,
i.e. morphisms. Therefore category theory is a
good mathematical theory if we want to describe
chance as it transforms the observables.

Let us start the analysis of the dynamic of observ-
ables from the duality between positive and neg-
ative information. To help the intuition let us fix
an experiment X .

As we have assumed, every infinite number of

outcomes x∞ ∈ |X| determines with certainty a
measure. Therefore if we look from an infinite fu-
ture to the present, every x∞ determines a unique
measure µ0 that can govern the process. Every
x∞ divides all the possible observables into two
classes, the set of statistics (i.e. the observables
that generate measures in accordance with µ0)
and the set of tests (i.e. observables that generate
the measures that are different from µ0). More-
over a x∞ completely determines a realization of
the experiment X .

The knowledge of one x∞ will be called the con-
dition of total information. From this observation
we can say that the relevant information is con-
tained in the observables made by an infinite num-
ber of outcomes. These facts will be mathemati-
cally described by the category T X of stochastic
time of the experiment X . To help the intuition
first let us give a rough description of T X .

As a first approximation the objects of T X are
the observables and there is an arrow f : y → x
between two observables iff all the information
of x is contained in y, i.e. x and y give the same
statistical measure, and x ⊆ y.

Note that, in usual time, the condition x ⊆ y is
sufficient to say that y is in the future of x, while
in T X , for the existence of a time arrow between
y and x we must also require that the two mea-
sures associated to x and y are the same, i.e. in
stochastic time, time arrows respect statistical co-
herence.

Due to the above observations, the arrows of the
category T X of stochastic time go from the future
to the past preserving the measure observed in the
future.

Note that in this description of time there can
be no time arrow between ht and h as in linear
time, because the shift from h to ht requires a
change in information state. Under the hypothesis
of the soundness of the statistics, the future is de-
scribed by a sequence of coherent outcomes, i.e.
they generate the same statistical measure. There-
fore the future of ht is described by all observ-
ables x with ht ⊆ x that satisfy the constraint:
σx(h) = σx(t) = 1

2 , while the future of h is made
by the observables y s.t. σy(h) = 1.

From a stochastic point of view the two futures re-
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fer to two different realizations of the experiment
X: in the first case the realization is generated
by an unbiased coin, while in the second case we
have a completely biased coin.

For this reason, in the description of the evolu-
tion of an experiment, incoherent time evolutions
are not allowed, because here time is linked to
the stochastic properties of the experiment and
stochastic coherence must be preserved.

The assumption made in this work is that time is
not an absolute concept, but it is related to an ex-
periment, therefore each experiment has its own
time structure.

This is a consequence of the observation that it is
not possible to observe time evolution without the
dynamic of information and information changes
are relative to the experiment.

At the end of this section we will show that usual
time is a special case of this definition of stochas-
tic time. Indeed usual time is a law of chance and
hence it has a deep link with the concept of proof,
due to the fact that profs are laws of chance.

This rough idea of stochastic time for the case of
a coin tossing experiment is given in figure 3.

Now let us give the complete description of the
category T X .

For every observable x ∈ |X| there is an object
Ax of T X called stochastic time point. Ax is the
set of all σy that contain all the information of σx,
i.e. σy = σx and x ⊆ y. Intuitively Ax contains
all the possible futures of x. if there is an arrow
f : Ay → Ax then Ay ⊆ Ax. Therefore time
arrows describe the process of information refine-
ment.

Although useful in the understanding of stochas-
tic time, the hypothesis of total information is
too strong for a representation of the dynamic of
information. For a mathematical description of
chance it is more convincing the assumption of
partial information.

Under this condition we do not know if an ob-
servable x belongs to the set of x s.t. xTESTx∞
or to the set of x s.t. xSTATx∞, hence we are
forced to assume that µ0 = σx. Thus an impor-
tant aspect of chance is the dynamic of informa-
tion, the acquisition of new information given by

the observation of new outcomes, i.e. the process
of refinement of information.

To understand how the flow of information works,
assume that we have observed ht. In this informa-
tion state, the possible future is given by all the
arrows that come from a measure that gives the
same probability to head and tail. If the succes-
sive outcome is h, then the new information state
is Ahth, where we are forced to make a new hy-
pothesis about the measure that governs the pro-
cess (µ0), i.e. the probability of h is 2

3 and the
probability of t is 1

3 .

This variability of information is a crucial point in
the description of chance. Moreover note that this
process goes in the opposite direction w.r.t. the
arrows of T X .

From a mathematical point of view there is an el-
egant way to formalize the above properties. We
can construct a new category SetsT

Xop

of objects
that vary over the category of stochastic time.

More precisely the objects of SetsT
Xop

are con-
travariant functors from the category of stochastic
time to the category of sets.

The functors are contravariant because, as we
have noted, the process of information refinement
reverses the arrows of time. This means that the
dynamic of the information is described using the
finite available information that goes from a finite
past to the present. On the contrary the structure
of stochastic time is defined using the important
property that the meaning of every observable is
given by its link with an infinite future where the
sets STAT and TEST do not change.

All these ideas have the following mathematical
representation. To each formula of the language
of linear logic, or better to each experiment asso-
ciated to the formulae, we can associate the cat-
egory of contravariant functors from the category
of stochastic time relative to the experiment to the
category of sets.

This category, indeed a topos, is assumed as the
mathematical description of the chance structure
that generates the experiment, and it has interest-
ing mathematical properties:

1) it is a complete set theory where sets vary over
stochastic time
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2) it has a powerful internal language of higher
order, that means that it has formulae that speak
over other formulae and it is possible to quantify
over formulae, with a valid and complete proof
system.

The category of chance is complex, but to give
the intuition of how this structure can be used to
show the soundness of the method it is sufficient
to describe the object Ω that acts as a set of truth
values for the internal language of the category of
chance.

As a functor, Ω sends every stochastic time point
Ax to the set of all cosieves on Ax. A cosieve S
is a set of arrows s.t. if f : Ay → Ax is in S
and g : Az → Ay then f ◦ g ∈ S. This means
that if f : Ay → Ax belongs to S then every
future ofAy belongs to S. Hence a cosieve onAx
describes a possible future that starts from x.

A formula α of the internal language is an arrow
in the category of chance, i.e. a natural trans-
formation, from a contravariant functor F to Ω
(α : F → Ω).

A formula α is true in a time pointAx if its value
on F (Ax) is the maximal cosieve on Ax, i.e. the
set of all arrows with codomain Ax. This means
that α is true in Ax iff it remains true in every
future of Ax.

Therefore true in Ax means stochastic-time in-
variant in Ax.

A formula is true in the category of chance if it is
true in every stochastic time point, i.e. whatever
will be the measure that governs the process.

Therefore we arrive at a mathematical description
of law of chance: a law of chance is a true for-
mula in the category of chance.

It is possible to prove that every stochastic clique
aφx can be represented in the category of chance by
a suitable formula of the internal language αφ(x).

This representation is possible because in the in-
ternal language of the category of chance there is
a formula P (L) = r that is true in a time pointAx
iff for every σ ∈ Ax it holds that σ(L) = r. The
term P is a categorical definition of measure. The
definition is so abstract that it can represent dif-
ferent semantics of uncertainty. For instance if the
category T is made of sets of possibility measures

the proof system of the category of contravariant
functors gives a valid and complete logic for pos-
sibilistic reasoning. The same holds for probabil-
ities and upper and lower probabilities.

Using the term P , it is possible to show that every
generic clique aφx can be represented in the inter-
nal language by a formula αφ(x).

This representation preserves the intended seman-
tics. In fact it is possible to prove that αφ(x) is
true in Ax iff x and x are coherent observables.

Using this machinery we arrive at the proof of the
soundness of the method. In fact, if π is a proof
of a formula φ then for every observable x used to
interpret π in the generic clique aφx, it holds that
αφ(x) is a true formula, hence a law of chance.

This shows that proofs do not depend on the avail-
able information x neither on the unknown mea-
sure µ0 that governs the process.

Let us analyze the proof ` 1, indeed an axiom
of linear logic, to give a simple example of the
method, and to discover from where usual time
comes.

The atomic formula 1 is the witness of provability,
in fact, in linear logic a formula is provable iff 1
belongs to its truth value.

1 is the neuter element w.r.t. the⊗ connective, i.e.
for every formula φ it holds that 1⊗ φ = φ.

Due to the stochastic meaning of the⊗ connective
the following equality must hold: F ε(1)×F ε(φ) =
F ε(φ). This means that for every n and for every
L ∈ F ε(1)

n ,M ∈ F ε(φ)
n , it holds that L∩M = M .

From this we obtain that for every L ∈ F ε(1)
n and

every n, we have that L = Ξ.

This completely characterizes 1 as an experiment.

In fact as a stochastic process 1 is a family of
constant random variables 1n. Therefore 1 is an
experiment that has only one possible outcome
10(ξ), that surely happens. An observable has
the form x = {10(ξ), ..., 1n(ξ)}. Moreover
σ1
x is the unique probability measure defined

over {Ξ, ∅}. If π is the proof of 1, then π is
interpreted in a1

x = {x : x ∈ |1| ∧ xSTAT1x} =
{{10(ξ)}, {10(ξ), 11(ξ)}, ..., {10(ξ), .., 1n(ξ)}, ..}.
The formula α1(x) that corresponds to a1

x in
the category of chance, is P (Ξ) = 1. It is clear
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that α1(x) is a true formula because for every
probability measure σ it holds that σ(Ξ) = 1.
Note that 1 is a law of chance: it does not vary in
stochastic time, the outcome is always the same
and it is invariant w.r.t. uncertainty, it does not
depend on the measure that governs the process.

All these properties define the usual idea of time.

In fact a clock is nothing but an experiment that
has a unique outcome: time passing, the result of
a regular oscillation, that surely happens. An ob-
servable is a date, i.e. the number of outcomes
observed. For instance today’s date is nothing but
the number of seconds passed after Christ’s birth,
i.e. the number of observed outcomes of our (ab-
stract) clock.

Note that we have defined a semantics of logic
directly based on the observables without the use
of the concept of truth.

Truth can be seen as a law of chance, in fact it
does not depend on the available observables. Un-
fortunately it is so abstract and mythological that
it completely looses its connection with the ob-
servables and the computational aspects of logic
(proofs). This is due to the fact that every proof
is interpreted in a single element (i.e. true). For
these reasons in logic there are two different se-
mantics and proofs semantics is not a semantics
for entire logic, for instance atomic formulae do
not have an explicit interpretation (see [2]).

In the presented mathematical framework every
formula has an interpretation (the category of
chance constructed over the time structure of the
experiment associated to the formula) rich enough
to represent also the computational aspects of rea-
soning.

4 Conclusion

Let me conclude with a note on my personal in-
terest in this research. I believe that the laws of
chance can give an interesting contribute to an-
swer the following question: why mathematics is
reliable?

It is a common opinion that even a partial an-
swer to this question could give some insight
to the problem of the foundations of mathemat-
ics. There are many examples of the reliability

of mathematics, for instance the existence of the
planet Neptune has been foreseen only on the ba-
sis of mathematical computations.

We have seen that reasoning and computing, due
to the strict link between proofs and typed λ-
calculus, transforms sets of observables into set
of observables in a sound mode. Where sound
means that these transformations do not depend
on the available data or on the (unknown) mea-
sure that governs the process, i.e. they are chance
invariants.

My claim is therefore that mathematics is reliable
because it is able to grasp some of these invariants
that remain stable also in the presence of the high
variability of outcomes due to randomness. This
aspect gives us the possibility of defining non lo-
cal rules (the one of logic and computations) used
to give meaning to local observations (the one
available to us), i.e. rules that allow us to fore-
cast what we have not yet observed, like in the
example of the discovery of the planet Neptune.
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Figure 2: X × Y : Urn and coin experiment
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Figure 3: Sketch of the category of stochastic time (coin experiment)
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