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Abstract

In collected data information about
a single property may be presented
with variable resolution and fo-
cus. The present paper describes
how hierarchically structured at-
tribute domains support the trans-
fer of knowledge between alterna-
tive frames of discernment allowing
to flexibly serve information needs
and facilitate the processing of in-
homogeneous data. The approach is
later extended to accommodate set-
valued attributes, which have pre-
viously been employed to represent
imprecision and have recently gained
attention in text processing, hierar-
chy learning or multi-label classifica-
tion.

Keywords: Information Fusion,
Random Sets, Knowledge Represen-
tation

1 Introduction

One of the major steps in solving classification
and prediction tasks consists in the analysis
and representation of interaction patterns be-
tween attributes. To distinguish genuine and
reproducible relationships from random vari-
ations such statistical analyses rely on a suffi-
cient number of sample cases. For discrete
distribution, what constitutes a “sufficient
number” is considerably influenced by the car-
dinality of the underlying sample space. Con-
sequently, to ensure a minimum number of

cases per instance, a lower granularity sample
space may be preferred over a finer one. In
other cases samples are supplied by an inho-
mogeneous collection of information sources
that provide observations on different levels
of detail. Hierarchically structured attribute
domains provide a robust and interpretable
approach to dealing with such problems.

Using probability trees as a starting point, the
present paper investigates data representation
with hierarchical attributes. After recapit-
ulating the concept, frames of discernment
and their relation to structured attribute do-
mains are discussed. In section 2 we suggests
a method to efficiently represent practically
relevant sets of frames and manage their in-
teraction. That approach is extended in sec-
tion 4 to account for set-valued attributes,
which, for instance may reflect multi-label de-
scriptions, sets of alternatives or imprecise
data. The suggested information-compressed
representation differs from the more general
random-set approaches in providing a scalable
solution when a large number of focal sets is
admitted.

2 Frames of Discernment

Let O be a universe of objects and Λ =
{λ1, . . . λn} a finite set of labels used as at-
tribute values for characterizing individual
objects w. r. t. a certain property. Ideally,
that property can be described for each ob-
ject o ∈ O by associating exactly one of the
attribute values from Λ. An attribute A is
then identified with a function A : O → Λ
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that assigns the correct1 descriptive label to
each of the considered objects.2.

The above definition of an attribute assumes
the existence of a generally accepted set of
mutually exclusive attribute values that is
suitable for recording, as well as processing
and presenting the information. Yet, in cer-
tain situations it may be favorable to use
several complementing views to represent the
available information. Such situations may be
marked by

• information sources that differ w. r. t. ob-
servation capabilities,

• information needs that differ between the
individual users or

• specific requirements of processing steps,
e.g., w. r. t. sample size.

For instance, leaving out detail that is ir-
relevant to a particular user may actually
contribute to a better understanding of rel-
evant pieces of information. Applying the
idea of alternative frames, an attribute must
be reimagined as a collection of frame-specific
mappings that assign labels to objects; but in
contrast to the more general interaction be-
tween attributes, label assignments for frames
referring the same attribute should closely
correspond to each other. Distractive distinc-
tions in a knowledge representation, for in-
stance, are suppressed, by applying a surjec-
tion from the given set of lables onto a set
of less specific one. This reduction of detail
reflects a conversion to a coarser, i.e. less in-
formative, frame of discernment [8].

The existence of such a mapping also defines
a partial ordering on the set of frames. How-
ever, that idea is more commonly expressed
using the notion of a refinement.

Definition 1 (Shafer 1976) A set Λ′ is a re-
finement of Λ if there is a mapping ref : 2Λ →

1The definition does not require that function to
be known.

2For a number of problems a more servicable de-
scription is usually achieved by using a number of at-
tributes that reflect properties relevant to the current
information needs. The interaction of such attributes
is addressed in a different publication [7]

2Λ′
such that ∀λ1, λ2 ∈ Λ :

1. ∀λ ∈ Λ : ref({λ}) 6= ∅

2. (λ1 6= λ2) ⇒ ref({λ1}) ∩ ref({λ2}) = ∅

3.
⋃ {ref({λ}) | λ ∈ Λ} = Λ′

4. ref(A) =
⋃ {ref({λ}) | λ ∈ A}

Condition (i) ensures that any label in the
original frame is still represented by at least
one label in the refined frame, whereas con-
dition (ii) guarantees the preservation of ex-
isting distinctions. Conditions (iii) and (iv)
ensure correspondence of the considered at-
tribute domains and provide a set extension
for mapping operations, respectively. A set A
is called a coarsening of a set B if there is a
refinement ref, such that ref(A) = B. The
refinement relation structures the set of refer-
ence frames as a lattice.

Although there are usually several meaningful
ways to subdivide the equivalence class asso-
ciated with a label during refinement, a hier-
archical organization of the attribute domain
is advantageous in that it permits to easily
find, summarize or arrange objects and in-
formation. Libraries, for instance, are orga-
nized according to a fixed hierarchy of topics,
even though several equally suited taxonomies
may be conceivable. The selected hierarchy
generates a family of related frames, which
differ only with regard to the level of detail
employed for corresponding subframes. The
set of a label λ’s direct children in the hier-
archy H is called its direct refinement w.r.t.
H (written childrenH(λ)). In extension of
that, the set of all descendants, including in-
direct ones, of a label λ in H is denoted by
descH(λ). Similarly, the functions parentH(λ)
and ancH(λ) = {λ′|λ ∈ descH(λ′)} are de-
fined, which permit to link labels with their
parents and ancestors in the label hierarchy3.

A simple label hierarchy is shown in Figure 1.
The attribute value hierarchy reflects a sub-

3To enforce that the parent is defined for all admis-
sible labels, an auxiliary root symbol is introduced in
the label hierarchy.
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division of the classes labeled a1 and a3 with

descH(a1) = childrenH(a1) = {a11, a12, a13},
descH(a3) = childrenH(a3) = {a31, a32}.

Starting from the coarsest frame {a1, a2, a3}
(repeatedly) replacing labels with their di-
rect refinements H produces three new
frames of discernment {a11, a12, a13, a2, a3},
{a11, a12, a13, a2, a31, a32}, {a1, a2, a31, a32}.

a1 a2 a3

a11 a12 a13 a31 a32
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Figure 1: Attribute value hierarchy with at-
tached conditional probabilities for sublabels

3 Modeling Uncertainty with
Hierarchical Attribute Domains

Having discussed the formalization of at-
tributes and their domains, let us now con-
sider the representation of uncertain knowl-
edge on a family of frames. Uncertainty
arises, for instance, from limited observation
capabilites potentially resulting in wrongly
assigned lables. Quantitative modelings for
this type of uncertainty are usually based
on assumptions about the measuring process
or on estimates from representative reference
data. They are formally expressed using a
family of conditional probability distributions
PΛ(AΛ = λi | OΛ = λj), which statistically
relate the unknown matching labels on a given
frame Λ with observed ones. In combina-
tion with observed instantiations, this deter-
mines a distribution and the associated mea-
sure PΛ : Λ → [0, 1] over Λ.

When switching between alternative frames of
discernment information may also be lost due
to non-corresponding lables. To alleviate the
effects of that problem a model can again be
supplemented with generic information about
the statistical interaction between data repre-
sentations on pairs of frames. Such interac-
tion patterns are expressed, for instance, us-
ing conditional distributions.

A general obstacle to this approach is the
amount of storage required to encode frame
interaction. Fortunately if the admissible
frames are restricted to those generated from
a single hierarchically structured attribute do-
main, it suffices to store branching proba-
bilities for each of the child-lables. For an
object that is correctly described by a label
λ, the branch probabilities PH(λi | λ) quan-
tify the uncertainty w.r.t. which of the sub-
labels λi ∈ childrenH(λ) provides the match-
ing description on a frame, where label λ is
expanded. Presuming the sub-label distribu-
tions are conditionally independent given the
given the parent labels, PH may be applied for
all descendants of λ as the value of the mea-
sure is obtained by multiplying branch proba-
bilities along a path of serial refinements. The
probability tree representation, which is illus-
trated in Figure 1, thus supplements the infor-
mation required for converting distributions
to frames with locally higher resolution. The
suggested approach has the additional advan-
tage, that the uncertainty component intro-
duced due to frame conversion is contained
locally. As a result of the imposed restrictions
only three cases have to be considered when
mapping an element λ1 from a frame Λ1 to a
frame Λ2 generated by the same hierarchy H
of attribute values:

• λ1 is an element of Λ2 as well,

• λ1 summarizes a subframe A ⊆ Λ2 con-
sisting only of its (possibly indirect) de-
scendents in the hierarchy

• λ1 is itself part of a subframe associated
with a unique element of Λ2.

Neither of the frames is marked out so Λ1

and Λ2 can be interchanged in that state-
ment (Figure 2). Applied to the conversion
of probability distribution between frames of
the same family we obtain:

Definition 2 Let Λ1 and Λ2 be two frames of
discernment generated from the same hierar-
chy H and PΛ1 a probability function over Λ1.
The mapping TΛ1→Λ2 : Prob(Λ1) → Prob(Λ2)
that converts a probability distribution from
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a1 a2 a31 a32

a11 a12 a13 a2 a3Λ1:

Λ2:

Figure 2: Correspondence of subframes and single labels

frame Λ1 to a probability distribution over Λ2

is computed as:

PΛ2(λ2) = TΛ1→Λ2(λ2)

=



PΛ1(λ2)
if λ2 ∈ Λ1,∑

λ∈descH(λ2)∩Λ1

PΛ1(λ)

if descH(λ2) ∩ Λ1 6= ∅,
PH(λ2 | λ) · PΛ1(λ)

if ∃λ ∈ Λ1 : λ2 ∈ descH(λ),

(1)

where Prob(Λ) denotes the set of all possible
probability functions on a frame Λ.

Note, that the probability assigned to a given
label does not depend on the composition
of the frame Λ2 under consideration. Thus,
equation 1 may be used to condition the prob-
abilities for all labels in the hierarchy with
new information from observations on a spe-
cific frame.

As an example, consider a conversion from
Λ1 to Λ2 as given by Figure 2 with an
original distribution PΛ1 on Λ1; PΛ1(a11) =
PΛ1(a2) = 0.2, PΛ1(a12) = PΛ1(a13) = 0.1
and PΛ1(a3) = 0.4. Equation 1 permits to
compute PΛ2 = TΛ1→Λ2(PΛ1). The subframe
{a11, a12, a13} = A ⊆ Λ1 is represented in Λ2

by the single attribute value a1. The probabil-
ity originally assigned to the elements of A is
now attributed to a1, i.e PΛ2(a1) = PΛ1(a11)+
PΛ1(a12) + PΛ1(a13) = 0.4. Label a2 appears
in both frames, so PΛ2(a2) = PΛ1(a2). The
two remaining probabilities are computed us-
ing the estimated sub-label distribution, i.e.,
PΛ2(a31) = PH(a31 | a3) · PΛ1(a3) = 0.1 and
PΛ2(a32) = PH(a32 | a3)·PΛ1(a3) = 0.3, which
fully determines the probability function PΛ2 .

4 Extension to Set-Valued Data

So far it was assumed that all objects in O
could be described using no more than one la-
bel per object. However, given that often only
a subset of those objects would actually have
been observed by the time the attribute hi-
erarchy is chosen, that idealization may turn
out too optimistic. Additionally if compos-
ite objects are considered (e.g. texts), a single
label per attribute may not provide the best
possible specification. This means, that the
attribute A is actually set-valued with map-
pings (A∗

Λ : O → 2Λ \ {∅}, where 2Λ denotes
the power set of Λ.) Unfortunately, as labels
are not mutually exclusive, uncertainty may
no longer be represented by a probability dis-
tribution over the frame.

Several noteworthy approaches to dealing
with uncertainty w.r.t. set-valued entities may
be expressed in terms of random sets [6],
that is, set-valued random variables. A
very similar concept has previously been used
by Dempster [2], who investigated upper
and lower probabilities induced by set-valued
mappings from a probability space and fo-
cused on sets as means to express imperfect
knowledge about the distribution of pieces of
probability mass. Under a subjectivist inter-
pretation of probability that representation
also gives rise to the mass distributions of
Shafer’s theory of evidence [8, 5].

The introduction of random sets formally re-
duces the problem of uncertainty represen-
tation for set-valued attributes to the prob-
abilistic case, the only difference being that
the distributions are defined on the power
set of the frames instead of the frames them-
selves. Yet the reduction is only achieved at
the cost of an increased cardinality of the sam-
ple space, which, unless the admissible set-
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valued outcomes are restricted by favorable
conditions, would render an approach imple-
menting that strategy very resource-intensive.
Moreover, as argued before, the larger sample
space is disadvantageous for estimating dis-
tributions from data. Still the approach pro-
vides a reference modeling with interpretable
aggregation operators, by which information
may be converted between frames.

Possibility distributions in the sense of [3] pro-
vide a compact representation of uncertainty
and imprecision (the latter being a special
interpretation of set-valuedness) on a given
reference frame, but rely on consonant, that
is nested, focal sets. Unfortunately that as-
sumption cannot be justified for the more gen-
eral setting at hand. The consonance require-
ment is overcome by the context model in-
terpretation given in [4], though at the ex-
pense of reduced representational power and
the lack of a consistent aggregation opera-
tor [1]. Without a meaningful aggregation
operator, the context model cannot support
the conversions required for a frame-spanning
representation. Nevertheless it contributes to
the solution of the problem at hand in sug-
gesting one-point-coverages i.e., the combined
probability assigned to the sets that contain a
given element of the reference frame, as infor-
mation summaries. One-point-coverages can
be interpreted as the probability of a particu-
lar element λ ∈ Λ being among the acceptable
labels for an object. Conversely in Dempster’s
framework [2] or under an interpretation of
set-valuedness as imprecision, the one-point-
coverage corresponds to an upper probability
bound.

Like with the information compressed ap-
proaches discussed above, we suggest a repre-
sentation that only aims at preserving prop-
erties of the distribution that are relevant in
the uncertainty interpretation. In particular,
we selected the following pieces of information
that should be recoverable for each element λ
in H from an extended version of the data
structure presented in section 3:

• The estimated probability for the single-
ton {λ} i.e., the probability that λ is the

only correct label;

• The one-point-coverage of λ i.e., the
probability that λ is among the accepted
labels.

One may also be interested in the most spe-
cific single label expected to summarize the
true class of an object o ∈ O with probability
of at least p, where p ∈ (0.5, 1]. That goal can
be reduced to the first one, because finding
an adequate summary amounts to searching
the hierarchy of labels with their respective
assigned probabilities.

To meet the listed objectives a detailed distri-
bution over the power set of the original frame
is not required. Instead the suggested repre-
sentations uses a distribution over a coarser
sample space that does not distinguish be-
tween multi-valued attribute instantiations.
Formally this sample space is reflected as an
extended frame

Λ′ = Ext(Λ) = Λ ∪ {λs} (2)

associated with each frame Λ. The new sym-
bol λs is used to denote any multi-valued out-
come. The distribution defined w.r.t. that
frame, is induced by the set-valued observa-
tions from 2Λ. For an extended frame Λ′ =
Ext(Λ), the probabilities assigned to the ele-
ments of the extended frame given uncertain
set-valued descriptions from 2Λ are

P ′
Λ(λ)

=

{
PΛ(A∗

Λ = {λ}) if λ 6= λs

PΛ(A∗
Λ ∈ As if λ = λs,

(3)

where As = {A | A ∈ 2Λ ∧ |A| > 1} rep-
resents the set of multi-valued outcomes and
λ ∈ Ext(Λ). With probabilities still assigned
to disjoint groups of (set-valued) outcomes,
aggregation is based on addition. The re-
sulting distribution over Λ′ directly supplies
probabilities assigned to the singleton values
of A∗

Λ, yet to restore the one-point-coverages
opc(λ) additional parameters are required. In
order to identify those parameters, we rewrite
the one-point-coverage as ∀(λ) ∈ Λ :

opc(λ) =
∑

{A|A∈2Λ∧λ∈A}
PΛ(A∗

Λ = A)
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Figure 3: Attribute value hierarchy extended to accommodate one-point-coverages

= PΛ(A∗
Λ = {λ})

+
∑

{B|B∈As∧λ∈B}
PΛ(A∗

Λ = B)

= P ′
Λ(λ) + qλ · P ′

Λ(λs). (4)

The factor qλ denotes the fraction of set-
valued outcomes which contain λ among those
represented by λs. For positive values of
P ′

Λ(λs) it is defined as the proportion

qλ =
PΛ(λi ∈ A∗

Λ ∧ A∗
Λ ∈ As)

PΛ(A∗
Λ ∈ As)

.

Like the (conditional) probability functions
complemented by them, the values qλ can be
determined empirically. With hierarchical at-
tributes, the above representation is applied
for all subframes that result from direct re-
finements4. Together, these adaptations re-
sult in a modified attribute value hierarchy,
which is illustrated in Figure 3.

Because the labels in each direct refinement
still denote disjoint events, equation 1 may
be applied to lables of the extended frame hi-
erarchy as well. Concerning the calculation of
one-point-coverages it is useful to recapitulate
the structure of a frame in that modified hi-
erarchy. Starting from the set {ρ} that only
contains the root label, each refinement step
substitutes a label with its direct refinement
and adds an auxiliary label for the summa-
rized multi-valued elements. Thus, for any
frame that arose from a series of refinement
operations, the one-point-coverage of a label
λ ∈ H includes partial contributions from the
higher levels of the label hierarchy. With the

4For that purpose the coarsest frame is considered
a direct refinement of an abstract root label ρ.

initial constraint opcH(ρ) = P ′
H(ρ) = 1, the

generic one-point-coverage opcH for the labels
can be computed using the recursion formula
given in equation 5. In that equation m(λ)
denotes the special label for the multi-valued
cases within the direct refinement of λ’s par-
ent label, which was introduced along with
λ and its siblings in a refinement operation,
whereas qλ is the associated coverage factor
with respect to m(λ).

opcH(λ)
= opcH(parentH(λ))
· (P ′

H(λ | parentH(λ))
+P ′

H(m(λ) | parentH(λ)) · qλ)

(5)

If the goal is to convert case-specific informa-
tion on one-point-coverages and probabilities
for certain lables, the observed values have
precedence over the generic ones, and the re-
cursion is broken early. To efficiently compute
one-point-coverages for several elements of a
frame, the implementation reuses partial re-
sults. Due to shared ancestors in the hierar-
chy, the recursion may then be stopped early.

We remark, that equation 5 assumes the lo-
cal distribution within direct refinements to
be invariant w.r.t. single or set-valued instan-
tiations on coarser frames. Depending on
the interpretation of set-valuedness, this as-
sumption may require justification. It can be
avoided though, by introducing separate sets
of conditional probabilities.

5 Summary

The hierarchically structured attribute do-
main permits to fuse information from sources
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that differ w.r.t. resolution, reliability and fo-
cus. Uncertain knowledge is described us-
ing probability distributions on a group of
frames of discernment that were generated
using a common attribute value hierarchy.
We provided operations to map distribu-
tions between frames allowing comparisons or
the integration of information from different
sources. The suggested operations combine a-
priori knowledge on the general distribution of
sub-labels with case specific information from
observations w.r.t. to specific frames, and can
be used to support decisions when only partial
information is available.

The compressed representation of uncertain
set-valued information introduced in section 4
is related to the more general framework of
random sets but trades some representation
capabilities in favor of storage efficiency. We
argue that the reduction in representational
power is acceptable when models have to be
induced from to data as the detailed inter-
action structure potentially available with a
full representation would often be masked by
sampling effects.

The proposed ideas have been implemented in
a C library and are currently applied in the
development of measures for hierarchy learn-
ing from text data.
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