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Abstract 

This paper is devoted to an extension of the 

inclusion operator. The main idea that we 

suggest is to relax the arguments of the 

inclusion by means of proximity-based 

modifiers in order to obtain a more tolerant 

inclusion. It is shown that the relaxation can 

be envisaged in order to design a tolerant 

inclusion whose result is either Boolean, or 

valued in the unit interval. The focus is 

particularly made on graded tolerant 

inclusion. A set of axioms that was 

previously proposed for the characterization 

of graded inclusion of fuzzy sets is revisited 

in order to take into account the specificities 

of tolerant inclusion.  

Keywords: inclusion, graded tolerant inclusion, 

proximity relation.  

1. Introduction 

Several types of extensions of inclusion have been 

proposed in the “fuzzy set research community” in 

order to either: i) define the inclusion when fuzzy 

sets come into play, or ii) to make the result of the 

inclusion more flexible, i.e., valued in [0, 1], or iii) 

to authorize different types of exceptions. In the first 

case, Zadeh [17] defined the inclusion of fuzzy sets 

in the following way: E ⊆ F ⇔ ∀u ∈ U, E(u) ≤ 

F(u), where U denotes the universe of discourse. In 

the second case, the objective is to discriminate 

between situations significantly different where the 

usual inclusion does not hold, and a solution consists 

in using a fuzzy implication to define the graded 

inclusion [1]. In the third case, two visions of 

exceptions have been considered so far, which lead 

to two types of approximate inclusion indicators. A 

first idea, developed in [6], consists in weakening 

the universal quantifier underlying the inclusion into 

“almost all”, in the perspective of defining an 

approximate inclusion. The basic idea is to tolerate, 

in the evaluation of E ⊆ F, a certain number of 

exceptions (i.e., of elements of E which are not 

totally included in F according to a given 

implication), and in that sense the corresponding 

approximate inclusion can be called a quantitative 

one. In [7], another way of defining an approximate 

inclusion is presented and the idea is rather to give a 

central role to the intensity of the exceptions in order 

to define an inclusion indicator that can ignore to a 

certain extent the “low intensity” ones. In that sense, 

the operator defined can be called a qualitative 

approximate inclusion. 

Here, the idea is to take into account the notion of 

closeness between the elements of the domain, so as 

to define a proximity-based tolerant inclusion. For 

instance, one may consider that a set E is included in 

a set F if, for every element u of E, u is present in F 

(classical inclusion) or if F contains an element 

close to u. This kind of inclusion can deliver either a 

Boolean (i.e., 0 or 1) or a gradual (i.e., in [0, 1]) 

result. Recently in [5], we have considered the 

Boolean version of tolerant inclusion and have 

illustrated its concrete usage in the area of databases. 

In this paper, we are mainly interested in graded 

tolerant inclusion between fuzzy sets and in its 

axiomatization.   

The rest of the paper is structured as follows. In 

section 2, we recall some basic notions related to the 

(Boolean and graded) inclusion of fuzzy sets, as well 

as the way of defining proximity-based modifiers. In 

section 3, the principle of the proximity-based 

tolerant inclusion is introduced. In Section 4, we 
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describe the graded version of tolerant inclusion and 

we revisit the set of axioms proposed by Sinha and 

Dougherty [8] for the characterization of graded 

inclusion of fuzzy sets. Other variants of graded 

tolerant inclusions are considered in section 5. Last, 

we briefly recall the main contribution of the paper 

and conclude.  

2. Preliminaries and Background 

2.1 Inclusion of Fuzzy Sets  

2.1.1 Boolean version 

If A and B denote two crisp sets built on U, the usual 

way for defining the inclusion of A in B is: 

 (A ⊆ B) ⇔ (∀u ∈ U, u ∈ A ⇒ U ∈ B)                  (1) 

This definition can be extended in a canonical way 

to two fuzzy sets A and B, which leads to:  

(A ⊆ B) ⇔ (∀u ∈ U, A(u) →R-G B(u))                   (2) 

where →R-G stands for Rescher-Gaines implication: 

p →R-G q = 1 if p ≤ q, 0 otherwise. 

This view does not take into account the proximity 

between the elements of the universe, therefore it 

can happen that the result of the inclusion is false 

while it would be true if that notion was used.  

Example 1. Let A and B be the two fuzzy sets on U : 

A = {1/a + 0.6/b}, B = {1/a + 0.4/b + 0.9/c}.  

According to formula (2), A is not included in B. 

However, if one has available the knowledge that the 

element b is very close (according to a given 

proximity relation defined on the universe U) to the 

element c (which strongly belongs to B), it may 

make sense to upgrade the membership degree of b 

to B (which corresponds to modifying B into a fuzzy 

set B') and then A may be included in B'. In that 

sense, A ⊆ B' can be viewed as a relaxation of A ⊆ 

B. This is the basic idea that is developed in the 

following.♦ 

2.1.2 Graded version 

An inclusion whose result values are taken from the 

unit interval allows to account for set inclusion in a 

finer way than the original inclusion. The objective 

of a graded inclusion is to extend the notion of 

inclusion thanks to a degree. Several ways may be 

envisaged to move from the regular inclusion to a 

graded one. In the rest of the paper, a logical 

approach in the spirit of formulas 2 is adopted. From 

formula 2, the degree of inclusion of E in F is 

defined as: 

     Inc(E, F) = inf u ∈ U (E(u) →f F(u))                    (3) 

→f being a fuzzy implication operator from [0, 1]
2
 

into [0, 1]. Let us mention that this definition of the 

graded inclusion has first been proposed by Bandler 

and Kohout in [1]. 

There are several families of fuzzy implications. R-

implications [14] are defined as follows: 

p →R-i q = sup {x ∈ [0, 1]  | T(x, p) ≤ q} 

where T is a triangular norm generalizing the usual 

conjunction. It is possible to rewrite these 

implications as: 

p →R-i q = 1 if p ≤ q, f(p, q) otherwise 

where f(p, q) expresses a degree of satisfaction of 

the implication when the antecedent (p) exceeds the 

conclusion (q). The implications of  

Gödel:  p →Gö q = 1 if p ≤ q, q otherwise 

Goguen : p →Gg q = 1 if p ≤ q, q/p otherwise 

Lukasiewicz :  p →Lu q = 1 if p ≤ q, 1 – p + q  

otherwise 

are the three most used R-implications and are 

obtained respectively with the t-norms: T(x, y) = 

min(x, y), T(x, y)=xy and T(x, y)=max(x + y – 1, 0). 

Example 2. Let us consider the fuzzy sets: 

E = {0.1/a1, 0.9/a2, 1/a3, 0.7/a4},        

F = {1/a1, 0.6/a2, 0.8/a3, 0.7/a4}. 

The regular inclusion of E in F does not hold and the 

degree of inclusion of E in F is:  

min(1, 0.6, 0.8, 1) = 0.6 with Gödel implication, 

min(1, 2/3, 0.8, 1) = 2/3 with Goguen implication, 

min(1, 0.7, 0.8, 1) = 0.7 if Lukasiewicz implication 

is used.♦ 

S-implications [14] generalize the (usual) material 

implication p → q = (not p) or q) by:   

p →S-i q = S(1 – p, q) 
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where S denotes a triangular co-norm. It can be 

noticed that the minimal element of this family, 

namely Kleene-Dienes implication obtained with 

S(x, y) = max(x, y) expresses the inclusion of the 

support of E in the core of F.   

Remark. It must be noticed that the approach based 

on formula (3) only applies to fuzzy sets since in the 

presence of regular sets the result of any fuzzy 

implication is either 0, or 1.  

2.1.3 Axiomatization of the graded inclusion 

Several researchers aimed at axiomatizing the 

graded inclusion of fuzzy sets have been proposed. 

Sinha and Dougherty [8], in particular, defined the 

following set of axioms: 

Let U be a universe and F(U) the class of the fuzzy 

sets defined over U. 

(SD1)    Inc(A, B) = 1 ⇔ A ⊆ B in Zadeh’s sense 

(SD2)    Inc(A, B) = 0 ⇔ ∃u ∈ U such that A(u) = 1 

             and B(u) = 0 

(SD3)    Inc has increasing second partial mapping:  

             B ⊆ C ⇒ Inc(A, B) ≤ Inc(A, C) 

(SD4)    Inc has decreasing first partial mapping: B 

              ⊆ C ⇒ Inc(C, A) ≤ Inc(B, A) 

(SD5) Inc(A, B) = Inc(S(A), S(B)) where S is a 

F(U) → F(U) mapping defined by: ∀u ∈ U, 

S(A)(u) = A(s(u)), s denoting an U → U 

mapping. 

(SD6) Inc(A, B) = Inc(B
c
, A

c
) where A

c
 (resp. B

c
) 

denotes the complement of A (resp. B) in the 

universe U 

(SD7)    Inc(A ∪ B, C) = min(Inc(A, C), Inc(B, C)) 

(SD8)    Inc(A, B ∩ C) = min(Inc(A, B), Inc(A, C)) 

Independently of Sinha and Dougherty, Kitainik [13] 

developed an axiomatic approach to the treatment of 

fuzzy inclusion indicators. Kitainik’s requirements 

are given hereafter: 

(K1) Inc(A, B) = Inc(B
C
, A

C
)      (contrapositivity) 

(K2) Inc(A, B ∩ C) = min(Inc(A, B), Inc(A, C)) 

                                 (distributivity) 

(K3) Inc(A, B) = Inc(S(A), S(B)) where S is defined 

as in SD5                                  (symmetry) 

(K4) When applied to crisp sets, Inc coincides with 

crisp set inclusion.   

Kitainik proved that in the Sinha-Dougherty axiom 

list, the axioms 3, 4 and 7 are a direct consequence 

of the axioms 1, 2, 5, 6 and 8.  

2.2 About Proximity-based Modifiers  

Let us first recall the formal definition of the concept 

of a proximity relation [10].  

Definition 1. A proximity relation is a fuzzy relation 

R on a scalar domain U, such that for u, v ∈ U, 

R(u, u) = 1           (reflexivity), 

R(u, v) = R(v, u)         (symmetry). 

The quantity R(u, v) can be viewed as a grade of 

approximate equality of u with v.  

On a universe U which is a subset of the real line, an 

absolute proximity relation is an approximate 

equality relation E which can be modeled by a fuzzy 

relation of the form [10]: 

E: U × U → [0, 1] 

    (u, v) → E(u, v) = Z(u − v), 

which only depends on the value of the difference u 

− v, and where Z, called a tolerance indicator, is a 

fuzzy interval centered in 0, such that: 

i. Z(r) = Z(− r), i.e., Z = −Z;  

ii. Z(0) = 1; 

iii. The support of Z, denoted S(Z), is bounded 

and is of the form [−Ω, Ω] where Ω is a 

positive real number.  

In terms of trapezoidal membership function (t.m.f.), 

the parameter Z can be expressed by (−z, z, δ, δ) 

with Ω = z + δ and [−z, z] represents the core C(Z) 

of Z. 

Proposition 1. Let Z1 and Z2 be two fuzzy intervals 

centered in 0 on scalar domain U. The following 

entailment holds:  

Z1 ⊆ Z2 ⇒ E[Z1] ⊆ E[Z2]. 

The proof is straightforward. Classical (or crisp) 

equality is recovered for Z = 0 defined as µ0(x − y) = 

1 if x = y and µ0(x − y) = 0 otherwise. In the 

following, we will write E[Z] to denote the absolute 

proximity relation E parameterized by Z. See [10] 

for other interesting properties of E[Z].   
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Consider a fuzzy set F on the scalar domain U and 

an absolute proximity relation E(Z), where Z is a 

tolerance indicator. The set F can be associated with 

a nested pair of fuzzy sets when using E(Z) as a 

tolerance relation. Indeed,  

i. we can build a fuzzy set E
Z
(F) close to F, such 

that F ⊆ E
Z
(F). This is the dilation operation. 

E
Z
(F) gathers the elements of F and those 

outside of F which are somewhat close to an 

element in F in the sense of E[Z]. 

ii.  we can build a fuzzy set EZ(F) close to F, such 

that EZ(F) ⊆ F. This is the erosion operation. 

EZ(F) gathers the elements of F such that all 

of their “neighbors” – i.e. those which are 

somewhat close to them – are in F. 

Let (E[Z])s be the set of elements that are close to s 

in the sense of E[Z] and defined by (E[Z])s(r) = 

E[Z](s, r). These fuzzy sets can be constructed in the 

following way.    

Dilation operation. Dilating the fuzzy set F by Z 

will provide a fuzzy set E
Z
(F) defined by: 

E
Z
(F)(s) = sup

r∈U
 T((E[Z])s(r), F(r))                   (4) 

              = sup
r∈U

 T(Z(s − r), F(r)), 

where T is a triangular norm. Formula (4) can be 

interpreted as the degree to which (E[Z])s and F 

overlap. It is easy to check that F ⊆ E
Z
(F) and then 

E
Z
(F) can be viewed as a weakened variant of F. 

Now if T = min, E
Z
(F) = F ⊕ Z where ⊕ is the 

addition operation extended to fuzzy sets [12].     

Erosion Operation. Considering the meaning of 

EZ(F) given above, it seems natural to adopt the 

following definition: 

EZ(F)(s) = inf
r∈U

 ((E[Z])s(r) →f F(r))                   (5) 

where →f denotes a fuzzy implication. (5) can be 

interpreted as the degree of inclusion of (E[Z])s in F. 

When →f is an R-implication induced by T, we have 

shown in [4] that (5) represents the greatest solution 

to the equation Z ⊕ X = F and writes EZ(F) = F . Z 

where . is the extended Minkowski subtraction 

(see for instance [11][12]).     

 

Remark. Let us mention that similar operations to 

dilation and erosion operations have been studied in 

the fuzzy rough sets setting [16] and in the context 

of fuzzy mathematical morphologies [3][9][15]. 

Closer links also exist with closure and interior 

operators proposed in [2].      

E
Z
 and EZ are fuzzy modifiers satisfying the 

following propositions. 

Proposition 2. For F ∈ P(U), we have: 

EZ(F) ⊆ F ⊆ E
Z
(F).  

The proof is straightforward.  

Proposition 3. Let F ∈ P(U) and G ∈ P(U), we have  

(i) F ⊆ G ⇒ E
Z
(F) ⊆  E

Z
(G)   (ii) F ⊆ G ⇒ EZ(F) ⊆ EZ(G) 

(iii) (E
Z
(F))

c
 ⊆ E

Z
(F

c
)              (iv) EZ(F

c
) ⊆ (EZ(F))

c
 

(v) E
Z
(F∩G) ⊆ E

Z
(F) ∩ E

Z
(G)  

(vi) EZ(F∪G) ⊇ EZ(F) ∪ EZ(G).    

Proof. See [4] 

3. Proximity-based Tolerant Inclusion 

The basic idea is to introduce a certain tolerance into 

the inclusion indicator by taking into account the 

proximity between the elements of the domain 

considered. This can be done by replacing A ⊆ B 

either by: 

A ⊆Z
1
 B ≡ EZ(A) ⊆ E

Z
(B) or by: 

A ⊆Z
2
 B ≡ (EZ(A) ⊆ B ∨ A ⊆ E

Z
(B)) or by: 

A ⊆Z
3
 B ≡ (EZ(A) ⊆ B ∧ A ⊆ E

Z
(B)) or by: 

A ⊆Z
4
 B ≡  EZ(A) ⊆ B or by:  

A ⊆Z
5
 B ≡ A ⊆ E

Z
(B),  

Remark. One has:  

A ⊆Z
3
 B ⇒ A ⊆Z

2
 B ⇒ A ⊆Z

1
 B. 

A ⊆Z
3
 B ⇒ A ⊆Z

4
 B and A ⊆Z

3
 B ⇒ A ⊆Z

5
 B.  

In the following, we focus on indicator ⊆Z
4
, and we 

use the notation: 

 A ⊆Z B ⇔ EZ(A) ⊆ B.                                            (6) 

To sum up, the principle is to say that A is included 

(with tolerance) in B iff very(A) is included in B 

where the linguistic modifier very is based on the 

notion of proximity. 

Recently in [5] we have tackled the case of Boolean 

tolerant inclusion when using the indicator ⊆Z
3
. 

Hereafter, we briefly recall this kind of inclusion but 

using the indicator of interest ⊆Z
4
. 
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3.1 Boolean Tolerant Inclusion 

3.1.1 Case of Crisp Sets   

In the case where crisp sets are dealt with, one must 

use a Boolean proximity relation E[Z] based on a 

regular interval Z = [–Ω, Ω] centered in 0. One gets: 

E[Z](u, v) is true if |u – v| ≤ Ω, false otherwise. 

Formulas (4) and (5) rewrite: 

E
Z
(F) ≡ {s ∈ U | ∃r ∈ U such that  

                               r ∈ F ∧ E[Z](r, s)}                  (7) 

EZ(F) ≡ {s ∈ F | ∀r ∈ U, E[Z](r, s) ⇒ r ∈ F}       (8) 

Example 3. Let us consider the sets 

A = {46, 47, 48} and B = {40, 47, 48, 60},   

defined on the interval [0, 100] of the integers, and 

the interval Z = [–1, 1]. We get: EZ(A) = {47}. Now, 

according to (1) A is not included in B but A ⊆Z B 

holds.♦ 

3.1.2 Case of Fuzzy Sets 

Here, the calculus – illustrated by the following 

example – is based on formulas (4) and (5). 

Example 4. Let us consider the fuzzy sets: 

A = {0.7/47, 0.9/48, 0.6/49, 1/50}, 

B = {0.6/41, 0.7/48, 1/49}, 

defined on the interval [0, 100] of the integers, and 

the fuzzy set Z represented by the t.m.f. (−1, 1, 2, 2). 

According to (2), A is not included in B.  

Using the triangular norm minimum in (4), and thus 

Kleene-Dienes implication in (5), we get: EZ(A) = 

{0.5/48, 0.5/49}. Then, A ⊆Z B holds as well.♦    

Let us recall the three axioms valid for Boolean 

inclusion: (i) A ⊆ B ⇔ B
c
 ⊆ A

c
; (ii) A  ⊆ (B ∩ C) ⇔ 

(A ⊆ B) ∧ (A ⊆ C) and (iii) A ⊆ B ⇔ S(A) ⊆ S(B) 

where the set S(A) is defined as S(A)(u) = A(S(u)) 

with a one-to-one mapping s: U → U. It is easy to 

check that these axioms remain valid when the 

regular inclusion is replaced by a tolerant one (i.e., A 

⊆Z B). The proof is similar to the one given in [5]. 

4. Graded Tolerant Inclusion (GTI)  

The aim of this section is to investigate the graded 

version of the tolerant inclusion introduced in (6) 

(i.e., whose result is valued in the unit interval).   

In spirit of formula (3), the degree of tolerant 

inclusion of A in B can be defined as follows:  

TolZ-Inc(A, B) = inf u∈U (A ⊆Z B) 

                        = inf u∈U (EZ(A) ⊆ B) 

     = inf u∈U (EZ(A)(u) →f B(u)),         (9) 

where →f denotes a fuzzy implication. This 

definition is a relaxation of formula (3) 

(corresponding to the graded inclusion in Bandler-

Kohout’s sense). It is easy to see that when E[Z] is 

the classical equality (i.e., Z = 0), formula (9) boils 

down to formula (3) and then recovers the non-

tolerant inclusion. Let us note that, as defined above, 

GTI writes also: 

TolZ-Inc(A, B) = Inc(AZ, B), 

where AZ stands for EZ(A).  

 

In the following, we consider the complete set of 

Sinha-Dougherty axioms and we check whether 

these axioms remain valid (or must be relaxed, or do 

not hold anymore) when a tolerant inclusion in the 

sense of formula (9) is considered. Moreover, we 

complete this set with some new axioms describing 

the specificities of a tolerant inclusion.  

First, we have to determine which of the SD axioms 

have to be modified in order to fit the notion of a 

tolerant inclusion. This is clearly the case of axioms 

SD1 and SD2. Axiom SD1 expresses that: 

Inc(A, B) = 1 ⇔ ∀ u ∈ U, A(u) ≤ B(u). 

It must be modified into 

(A1) TolZ-Inc(A, B) = 1 ⇔ ∀ u ∈ U, AZ(u) ≤ B(u). 

The right part of the above equivalence means that 

the eroded variant of A is included in B. Let us note 

that the implication in the reverse sense (⇐) is also 

valid when A ⊆ B holds (i.e.,  A ⊆ B ⇒  TolZ-Inc(A, 

B) = 1). Indeed, TolZ-Inc(A, B) = Inc(AZ, B) = 1 

since B ⊇ A ⊇ AZ and according to (SD1). Axiom 

(SD2) expresses  

Inc(A, B) = 0 ⇔ ∃ u ∈ U such that A(u) = 1 and 

B(u) = 0. 

It must modified into (where C(A) and S(A) denote 

the core and the support of A respectively)   

(A2) TolZ-Inc(A, B) = 0 ⇔ C(A) ∩ (S(B))
c
 ≠ ∅, if 

Z = (0, 0, δ, δ).  
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This form of Z allows for preserving the core of A 

when applying the erosion operation, i.e., C(AZ) = 

C(A). 

We now have to check whether the remaining 

axioms are still valid for the tolerant inclusion. 

Concerning axiom SD3, which expresses the 

monotonicity (under inclusion) of the indicator with 

respect to the second argument, it appears that it has 

a counterpart in the tolerant inclusion case and we 

have: 

(A3) B ⊆ C ⇒ TolZ-Inc(A, B) ≤ TolZ-Inc(A, C). 

Proof. We have  

TolZ-Inc(A, B) = inf u∈U (AZ(u) →f B(u)) 

                       ≤ inf u∈U (AZ(u) →f C(u)) since ∀ u ∈ 

U, B(u) ≤ C(u) due to the monotonicity of '→f' (i.e., 

(a→f b) ≤ (a→f b') if b ≤ b'). Then, TolZ-Inc(A, B) ≤ 

TolZ-Inc(A, C) holds.     

Concerning axiom SD4, which expresses the 

monotonicity (under inclusion) of the indicator with 

respect to the first argument, the question is: do we 

have:  

(A4)   B ⊆ C ⇒ TolZ-Inc(C, A) ≤ TolZ-Inc(B, A)? 

Due to the monotony of the implication:  

B ⊆ C ⇒ inf u∈U (B(u) →f A(u)) ≥   

                                                 inf u∈U (C(u) →f A(u)), 

and to proposition 3-(ii), we can easily check that 

(A4) holds. 

Let us now consider the counterpart of axiom SD7 

which writes in a tolerant inclusion context as 

follows 

(A7) TolZ-Inc(B∪C, A) ≤  

                         min(TolZ-Inc(B, A), TolZ-Inc(C, A)).  

Indeed, it is easy to check that (B∪C)Z ⊇ BZ∪CZ. 

Now, by SD4 we have Inc((B∪C)Z, A) ≤  

Inc(BZ∪CZ, A) = min(Inc(BZ, A), Inc(CZ, A)) using 

SD7 as well. Then, (A7) is true. 

Concerning axiom SD8, it still hold in a tolerant 

inclusion case and we have: 

(A8) TolZ-Inc(A, B∩C) =  

                         min(TolZ-Inc(A, B), TolZ-Inc(A, C)).  

Proof. We have 

TolZ-Inc(A, B∩C) = Inc(AZ, B∩C) = min(Inc(AZ, B), 

Inc(AZ, C)) = min(TolZ-Inc(A, B), TolZ-Inc(A, C)) 

using SD8. 

Axiom SD6 which states that Inc(A, B) = Inc(B
c
, 

A
c
) does not hold when using a graded tolerant 

inclusion. We have TolZ-Inc(A, B) = Inc(AZ, B) and 

TolZ-Inc(B
c
, A

c
) = Inc((B

c
)Z, A

c
) = Inc(A, ((B

c
)Z)

c
) by 

SD6. Now, for the S-implication, it easy to check 

that ((B
c
)Z)

c
 = B

Z
. Let us now compare the two 

indexes Inc(AZ, B) and Inc(A, B
Z
) in the case of the 

following example: 

Example 5. Let A = {0.2/41, 1/59}, B = {0.3/48, 

0.6/59, 1/60} and Z = (1, 1, 0, 0). It is easy to see 

that AZ = ∅ and B
Z
 = {0.3/47, 0.3/48, 0.3/49, 0.6/58, 

1/59, 1/60, 1/61}. Using the Kleene-Dienes 

implication, we obtain Inc(AZ, B) = 1 ≠ Inc(A, B
Z
) = 

0.8. Then, TolZ-Inc(A, B) = TolZ-Inc(B
c
, A

c
) does not 

hold in general.  

Let us now provide some new axioms which are 

specific to the tolerant inclusion notion: 

(N-A1) Monotonicity w.r.t. the parameter Z   

   If Z1 ⊆ Z2, TolZ1
-Inc(A, B) ≤ TolZ2

-Inc(A, B),  

(N-A2) Behavior w.r.t. ∪   

   If Z = Z1 ∪ Z2,  

    TolZ-Inc(A, B) ≥ max(TolZ1
-Inc(A, B),TolZ2

-Inc(A, B))  

(N-A3) Behavior w.r.t. ∩     

   If Z = Z1 ∩ Z2,  

    TolZ-Inc(A, B) ≤ min(TolZ1
-Inc(A, B), TolZ2

-Inc(A, B)) 

Proof. For axiom (N-A1), we have Z1 ⊆ Z2 which 

implies that AZ1 ⊇ AZ2
. Then, we deduce that Inc(AZ1

, 

B) ≤ Inc(AZ2
, B) using (SD4). Now in order to prove 

(N-A2), we have to check that ∀ (a, b, c) ∈ [0, 1]
3
, 

max(a, b)→f c = min(a→f c, b→f c), which holds 

since if a ≥ b, a→f c ≤ b→f c due to the monotonicity 

of →f w.r.t. the first argument. From this equality, it 

is easy to check that AZ = AZ1 ∩ AZ2
. Then we use 

(SD4). Axiom (N-A3) can be proved in a similar 

way.       

5. GTI based on other Indicators              

5.1 Indicator ⊆⊆⊆⊆Z
5
 

Let us now consider the semantics of GTI based on 

the indicator ⊆Z
5
. Formula (9) writes then: 
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TolZ-Inc(A, B) = infu∈U (A(u) →f E
Z
(B(u)) 

                        = Inc(A, B
Z
),                                 (10) 

where B
Z
 = E

Z
(B). Now, it is interesting to 

investigate the behavior of this variant of GTI w.r.t. 

Sinha-Dougherty axioms. Let us first look at axioms 

(A1) and (A2) which write now in the following 

way:  

(A'1) TolZ-Inc(A, B) = 1 ⇔ ∀ u ∈ U, A(u) ≤ B
Z
(u). 

The right part of the above equivalence means that A 

is included in the dilated variant of B. Let us note 

that the implication in the reverse sense (⇐) is also 

valid when A ⊆ B holds (i.e.,  A ⊆ B ⇒  TolZ-Inc(A, 

B) = 1). Indeed, TolZ-Inc(A, B) = Inc(A, B
Z
) = 1 

since B
Z
 ⊇ B ⊇ A and according to (SD1).  

(A'2) TolZ-Inc(A, B) = 0 ⇔ C(A) ∩ (S(B))
c
 ≠ ∅, if 

Z is such that S(B
Z
) = S(B).  

Here the form of Z required must preserve the 

support and affects only the core of B when applying 

the dilation operation
1
. 

Let us now come back to axioms (A3) and (A4) 

which are preserved: 

 (A'3)   B ⊆ C ⇒ TolZ-Inc(A, B) ≤ TolZ-Inc(A, C) 

 (A'4)   B ⊆ C ⇒ TolZ-Inc(C, A) ≤ TolZ-Inc(B, A) 

Proof. Let us first prove (A'3). We have TolZ-Inc(A, 

B) = Inc(A, B
Z
). Now from (B ⊆ C ⇒ B

Z
 ⊆ C

Z
) and 

by SD3, we deduce that Inc(A, B
Z
) ≤ Inc(A, C

Z
). This 

implies that (A'3) holds. (A'4) can be proved in a 

similar way.  

As to axiom (A7), it still hold but in its original 

version (i.e., SD7). Namely,  

(A'7) TolZ-Inc(B∪C, A) =  

                         min(TolZ-Inc(B, A), TolZ-Inc(C, A)). 

Indeed, we have TolZ-Inc(B∪C, A) = Inc(B∪C, A
Z
) 

= min(Inc(B, A
Z
), Inc(C, A

Z
)) = min(TolZ-Inc(B, A), 

TolZ-Inc(C, A)) using SD7. 

Axiom (A8) is preserved in a weakened form and 

writes as follows:       

                                                      

1
 At first glance, one can assign to Z the following t.m.f. 

(−z, z, 0, 0). Unfortunately, this form of Z does not ensure 

the preservation of the support, see [4] for more details.    

 

(A'8) TolZ-Inc(A, B∩C) ≤  

                         min(TolZ-Inc(A, B), TolZ-Inc(A, C)).  

Proof. From (B∩C)
Z
 ⊆ B

Z∩C
Z
, we have Inc(A, 

(B∩C)
Z
) ≤ Inc(A, B

Z∩C
Z
) = min(Inc(BZ, A), Inc(CZ, 

A)) using SD3 then SD8. This means that (A'8) is 

true. 

Now axiom (A'6) which consists to compare TolZ-

Inc(A, B)) and TolZ-Inc(B
c
, A

c
) reduces to axiom 

(A6) by considering the same assumptions. Indeed, 

we have TolZ-Inc(A, B)) = Inc(A, B
Z
) and TolZ-

Inc(B
c
, A

c
) = Inc(B

c
, (A

c
)

Z
) = Inc(AZ, B). Then, it 

does not hold as well. 

Concerning the axioms describing the specific 

features of the tolerant inclusion. In this case, they 

are similar to (N-A1)-(N-A3). Namely:   

(N-A'1) Monotonicity w.r.t. the parameter Z   

   If Z1 ⊆ Z2, TolZ1
-Inc(A, B) ≤ TolZ2

-Inc(A, B),  

(N-A'2) Behavior w.r.t. ∪   

   If Z = Z1 ∪ Z2,  

    TolZ-Inc(A, B) ≥ max(TolZ1
-Inc(A, B),TolZ2

-Inc(A, B))  

(N-A'3) Behavior w.r.t. ∩     

   If Z = Z1 ∩ Z2,  

    TolZ-Inc(A, B) ≤ min(TolZ1
-Inc(A, B), TolZ2

-Inc(A, B)) 

Proof. Let us just prove (N-A'2). To do this, we 

have to check that ∀ (a, b, c) ∈ [0, 1]
3
, T[max(a, b), 

c] = max[T(a, c), T(b, c)], which holds since if a ≥ 

b, T(a, c) ≥ T(a, b) due to the non-decreasingness of 

T. From this equality, it is easy to check that A
Z
 = 

A
Z1

 ∪ A
Z2. Then we use (SD4). 

5.2 Indicator ⊆⊆⊆⊆Z
3
 

In this case, the graded tolerant inclusion between A 

and B writes: 

TolZ-Inc(A, B) = Inc(AZ, B) ∧ Inc(A, B
Z
),             (11)                         

where the symbol '∧' stands for the conjunction and 

is interpreted by the 'min' operator. Obviously, this 

variant of GTI is more demanding than the two 

previous ones given in (9) and (10). Now, our aim is 

to check which axioms are preserved (resp. missed) 

in this context. First, it is easy to see that the pair of 

axioms (A1, A'1) is preserved but in a modified 

form: 

(A''1) TolZ-Inc(A, B) = 1 ⇔  

                      ∀ u ∈ U, AZ(u) ≤ B(u) ∧ A(u) ≤ B
Z
(u). 
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It is worth noticing that to have TolZ-Inc(A, B) = 1, it 

suffices only that  A ⊆ B holds. Concerning (A3) and 

(A4), they are preserved in their original forms.   

Now, we can easily check that (A7) (resp. (A'8)) is 

preserved but not (A'7) (resp. (A8)):    

(A''7) TolZ-Inc(B∪C, A) ≤ 

                         min(TolZ-Inc(B, A), TolZ-Inc(C, A)) 

(A''8) TolZ-Inc(A, B∩C) ≤  

                         min(TolZ-Inc(A, B), TolZ-Inc(A, C)).  

Axiom (A2) is missed in this context since we can 

not find a form of Z that simultaneously preserves 

the core when applying the erosion operation and the 

support when applying the dilation operation. 

Obviously, axiom (A6) is also missed.   

Finally, let us emphasize that the newly introduced 

axioms describing the specific properties of the 

tolerant inclusion notion, are also preserved in this 

context.    

6. Conclusion 

Various extensions of set inclusion have been 

proposed in the framework of fuzzy sets. In this 

paper, the novelty is to consider a proximity-based 

inclusion indicator, in order to take into account the 

closeness between the elements of the domain. Such 

an operator, based on a tolerance indicator defined 

over the domain considered, has been defined and its 

axiomatization has been provided for the graded 

version. One of the perspectives of this work is to 

illustrate its practical use, for instance, in databases 

field. 
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