
Abstract
In this paper, a revisited approach for
possibilistic fuzzy regression methods is
proposed. Indeed,  a new modified fuzzy
linear model form is introduced where
the identified model output can enve-
lope all the observed data and ensure a
total inclusion property. Moreover, this
model output can have any kind of
spread tendency. In this framework, the
identification problem is reformulated
according to a new criterion that assess-
es the model fuzziness independently of
the collected data. The proposed con-
cepts are used in a global identification
process in charge of building a piece-
wise model able to represent every kind
of output evolution.

Keywords: fuzzy linear regression

1    Introduction
Fuzzy regression, a fuzzy type of conventional
regression analysis, has been proposed to evalu-
ate the functional relationship between input and
output variables in a fuzzy environment. 
According to [6], fuzzy regression techniques can
be classified into two distinct areas. The first pro-
posed by Tanaka which minimizes the total
spread of the output is named possibilistic regres-
sion. In this case, the problem is viewed as find-
ing fuzzy coefficients of a regression model
according to a mathematical programming prob-
lem. The second approach developed by Dia-
mond [5], which minimizes the total square error
of the output is called the fuzzy least square meth-
od. 
Since the fuzzy regression has been introduced by
Tanaka and al. [12][10], several fuzzy regression
approaches have been proposed. In this context,
Tanaka, Hayashi and Watada [10] propose differ-
ent expressions of the criterion to be optimized

and different formulations of the constraints to be
satisfied for possibility and necessity estimation
models. Still in a linear context, Tanaka and Ishi-
bushi [11] extends their approach for dealing with
interactive fuzzy parameters. Furthermore, the
complete specification of regression problems
highly depends on the nature of input-output data
[6]. Some works are thus devoted to crisp input -
crisp output data [9] while others [8] consider
fuzzy input - fuzzy output data. Most commonly,
a mixed approach (crisp input - fuzzy output) is
chosen [12]. That is the formalism we adopt here
in a linear context with the idea of keeping a sim-
ple model, possibly invertible [2][3].
From most of these methods, three types of prob-
lems emerge: 
• The assumption of symmetrical triangular

fuzzy parameters is most frequently used.
However, such parameters have some limita-
tions, especially when total inclusion of the
observed data in the model output must be
ensured. 

• The identification is made at a chosen level α
considered as a degree of the fitting of the
obtained model to the observed data. If this
allows to simplify the problem by using inter-
val arithmetics to express the inclusion prob-
lem, after reconstruction of the parameters,
this inclusion isn’t guaranteed anymore at any
level α. 

• The obtained models are not able to represent
any tendency of the output spread. In this
case, the obtained models become more
imprecise than necessary in some situations. 

The main objective of this paper is to revisit some
theoretical works about fuzzy regression tech-
niques [6] and to propose some slight improve-
ments for the limitations quoted previously. 
This paper is organized as follows. In section 2,
the concepts of intervals and fuzzy intervals are
introduced. Section 3 is devoted to the conven-
tional fuzzy linear regression. A revisited ap-

Linear Fuzzy Regression Using Trapezoidal 
Fuzzy Intervals

A. Bisserier, R. Boukezzoula and S. Galichet

Laboratoire d’Informatique, Systèmes, Traitement de l’Information et de la Connaissance (LISTIC)
Université de Savoie BP 80439 74941 Annecy le Vieux, Cedex France

E.mail : amory.bisserier@univ-savoie.fr

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU’08, pp. 181–188

Torremolinos (Málaga), June 22–27, 2008



proach of the latter is detailed in section 4.
Section 5 and 6 present the identification process
and its application in the identification of a piece-
wise model. Applications on several examples
are shown in Section 7. Finally, conclusions and
perspectives are presented in Section 8.

2    Intervals and Fuzzy Intervals
• Conventional intervals
An interval is defined by the set of elements lying
between its lower and upper limits as: 

 
Given an interval a, its midpoint M(a) and its ra-
dius R(a) are defined by:

(1)
For two intervals [4] a and b, an inclusion relation
of a in b is defined as follows:

(2)

(3)

From equation (3) it obtains: 
(4)

Figure 1: inclusion of two conventional intervals
when a is a scalar value, the relation (4) becomes: 

 (5)
• Fuzzy Intervals
An interval a can be viewed as a special fuzzy
number whose membership function μa(x) takes
the value 1 over the interval and 0 anywhere else.
A fuzzy interval A  is represented by its member-
ship function . In order to specify the fuzzy in-
terval shape, one has to consider two dimensions.
The first one (horizontal dimension) is similar to
that used in interval representation, that is the real
line . The second one (vertical dimension) is re-
lated to the handling of the membership degrees
and thus restricted to the interval [0, 1]. In this
context, two kinds of information are required for
completely defining a fuzzy interval. Both pieces
of information, called support and kernel inter-
vals, are defined on the horizontal dimension, but
are associated to two different levels (level 0 and
level 1) on the vertical dimension (see figure 2).
For a fuzzy trapezoidal interval A we have: 

, (1)

To completely define the fuzzy interval, two ad-
ditional functions are used to link the support and
the kernel:

(6)

where α∈[0, 1] represents the vertical dimension.
In this case, for a given α-cut on the fuzzy inter-
val A, a conventional interval is obtained:

(7)

Figure 2 A fuzzy trapezoidal number
Finally, in the same way that the conventional in-
terval a is denoted [a−, a+], the fuzzy interval A
will be defined by its support and kernel bounds

(8)
A particular case of trapezoidal fuzzy intervals
are triangular symmetrical ones. In this case, the
fuzzy number can be defined by its kernel (modal
value) KA and the radius of its support RA, i.e. A
= (KA, RA). In other words:

 (9)

3    Fuzzy linear regression
Let us consider a set of N observed data samples
defined on an interval D = [xmin,xmax]. Let the jth
sample be represented by the couple (xj, Yj), j =
1,..., N where xj are crisp inputs stored in an in-
creasing order and the Yj are the corresponding
fuzzy output which is assumed to be triangular
and symmetrical fuzzy interval. In this case, this
fuzzy interval is completely defined by its modal
value KYj and its radius RYj, that is:

(10)
Like any regression technique, the fuzzy regres-
sion objective is to determine a predicted func-
tional relationship Ŷ  = h(x) between inputs x  and
outputs Y. In this paper, the function h is assumed
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to be linear and given by the following expres-
sion: 

(11)
defined on the domain D. 
In order to consider the fuzziness of the observed
outputs, the parameters A0 and A1 are fuzzy coef-
ficients. The latter are assumed to be triangular
and symmetrical, represented by: 

(12)

3.1    Inclusion problem statement
A fuzzy interval is a standard normal fuzzy set
defined on the set of real numbers, whose α-cuts,
are closed intervals of real numbers with bounded
supports. Using an α-cut representation, a fuzzy
interval is viewed as a weighted family of nested
intervals. By doing so, for a specified α-cut, the
fuzzy interval becomes a conventional interval,
which states that a fuzzy interval representation is
a generalization of a conventional one. Moreover,
this strategy has the advantage to reduce the fuzzy
computational complexity and makes easier its
implementation, especially in optimization and
identification problems. That is the approach pro-
posed by Tanaka for the identification of a fuzzy
model in the form (11) where a possibilistic re-
gression methodology according to the α-cut rep-
resentation principle is adopted [10], [12]. 

Indeed, for a set of observed data, the author tries
to identify the fuzzy model parameters A0 and A1
such as all the observed data are included in the
predicted ones for any α-cut, i.e., 

(13)
Equation (13) is viewed as a constraint in the
identification procedure. The latter is based on
the minimization of a criterion which exhibits the
spreads of the predicted intervals, that is:

(14)

After the optimization method is performed, the
obtained parameters computed for a given α-cut
are assumed to be defined for all .

Let us give a simple example used by Tanaka in
[10] to illustrate this method (see Table 1). In this
example, the pessimistic case (maximum of un-
certainty) is adopted, i.e. α = 0. In this case, the
constraints are the following ones:

(15)

The identification method gives the fuzzy sym-
metrical triangular coefficients A0=(3.85, 3.85), A1
= (2.1, 0), and the predicted intervals represented
in Table 1.

Table 1: Observed and predicted intervals. 

For example, when j = 1, the observed and the
predicted output are respectively Y1 = [6.2, 9.8]
and Ŷ1 = [2.1, 9.8]. It can be stated the inclusion
constraint is respected for α = 0, i.e.,

 .
According to Figure 3, it’s obvious that although
the inclusion is respected for α = 0, it is not re-
spected for any α ∈[0,1].

Figure 3: Observed and predicted outputs for  j = 1
From a general point of view, if the fuzzy model
parameters are identified for a chosen α-cut level
under the constraint (13), the inclusion of all ob-
served outputs in the predicted ones is not guar-
anted. Indeed, the inclusion relation between
intervals at α-cut level is not sufficient to guaran-
tee the total inclusion of the fuzzy intervals. For
example, when the inclusion is ensured for α = 0,
according to the kernel value positions in the
fuzzy interval, three cases have to be obtained
(see Figure 4 for two fuzzy intervals A and B). 

Figure 4: Three cases of support inclusion
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Indeed, when the supports are included, the total
inclusion of fuzzy intervals is respected if and
only if the modal values are equal. In this case,
the identification at α = 1 is impossible if the ob-
served modal values are not strictly lined up [6].
Moreover, the higher the α considered for identi-
fication is, the wider the support of the predicted
fuzzy number is [8]. These drawbacks weaken
the potential use of this method, especially in real
identification problems. 
3.2    Tendency problem statement
Let us now apply the Tanaka identification meth-
od for another example where the intervals result-
ing for a α-cut equal to 0 are presented in Table
2. In this case, it can be stated that the observed
outputs have a spread which is globally decreas-
ing.
The identified fuzzy parameters are A0 = (2.574,
4) and A1 = (2.43,0). A representation of the mod-
el output is given in Figure 5.

Table 2: Observed and predicted intervals.

According to Table 2 and Figure 5, it can be ob-
served that the identified model output spread is
constant. Obviously, it should be better if it was
decreasing, i.e. if the identified model presented
the same spread variation than the observed data. 

Figure 5: Representation of the identified model

More generally, one weakness of this method is
the fact that the fuzziness of the model output var-
ies in the same way than the absolute value of the
inputs. In this case, it is impossible to have a de-
creasing (resp. increasing) spread of the model
output for positive (resp. negative) inputs. This
restriction is acceptable in a measurement context
where it is usual to express percentage relative er-
rors. However, when fuzziness is considered as
an intrinsic characteristic of the system to be
modeled, the assumption that the higher the input,
the higher the fuzziness attached to the model
output, is open to criticism. Finally, as classical
fuzzy regression models are not able to represent
any tendency of output spread, they become more
imprecise than necessary in some situations. As a
consequence, in piecewise fuzzy regression prob-
lems, in which collected data can have any kind
of spread tendency, actual identification methods
are clearly insufficient.
Let us now study the tendency output problem in
order to release a suitable solution.
Form the model (11), the output modal value and
spread can be determined. Indeed, as A0 and A1
are symmetrical triangular fuzzy intervals, and x
a crisp input,     is also a symmetrical triangu-
lar one. In this case, the modal value  and
the spread  are given by:

(16)

As x is varying on D, the variation of (16) needs
to be analyzed according to the sign of x. 
From (16) it means that the variation of 
depends on the sign of  and can be increasing
or decreasing for any value of the input x.
According to (16), we see that the variation

 depends on the sign of the input. As  
is always positive, it can be stated that: if x is in-
creasing being positive, the output radius will in-
crease, whereas when x is negative, the output
radius will decrease.
In this framework, it is possible to have any kind
of variation of the output modal value, with an ap-
propriate sign of . However, the radius output
variation is limited by the sign of the input x.  

4    Revisited fuzzy linear regression
In order to deal with the two drawbacks discussed
in the previous section (inclusion and tendency
problems), two evolutionary concepts are intro-

j xj observed intervals predicted intervals

1 1 [1 , 9] [1 , 9]

2 2 [5.4 , 10.6] [3.43 , 11.43]

3 3 [8 , 12] [5.85 , 13.85]

4 4 [10 , 12] [8.28 , 16.28]

5 5 [13.5 , 14.5] [10.71 , 18.71]
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duced into the conventional fuzzy regression
model identification problems.
4.1    Inclusion problem solution
In order to overcome the inclusion problem relat-
ing to the α-cut specification, the fuzzy model pa-
rameters A0 and A1 are assumed to be trapezoidal.
In this case, it can be ensured that total inclusion
of all observed inputs in the predicted ones at
each level α is respected. As the fuzzy parameters
are trapezoidal, the model output Ŷ (x)  is also a
trapezoidal one. 
In order to extend the Tanaka interval method and
solving the inclusion problem, two inclusion con-
straints must be taken into account in the identifi-
cation method: 

 (17)
In this case, as a trapezoidal fuzzy interval shape
is assumed, it is obvious that if (17) is respected,
then the total inclusion is guaranteed for each lev-
el , i.e., 

(18)
Let us consider the jth observed data, whose out-
put is the triangular symmetrical fuzzy interval

. The corresponding predicted out-
put is the trapezoidal fuzzy interval given by: 

 . (19)
In this case, the constraints (17) can be written as:
• for α = 1:

(20)

• for α = 0:

(21)

4.2    Tendency problem solution
As stated previously, the output model tendencies
are not taken into account in the conventional
method. In order to solve this problem, a modi-
fied model expression is proposed. In this case,
the model output can have any kind of spread
variation for any sign of x by introducing a shift
on the original model input. Doing so, it is possi-
ble to obtain the desired sign for the shifted input
variable, and so to influence the spread variation
of the output.
In this case, the fuzzy linear model (11) defined
on its domain D, becomes:

(22)

where A0 and A1 are trapezoidal parameters.
In the model (22), the output spread is given by
the support radius, i.e. :

(23)
According to (23) and by tuning the value of shift,
the model output can have any spread variation
on D. Indeed,
• if  , i.e. , then the

model output has an increasing spread on D.
• if  , i.e. , then the

model output has a decreasing spread on D.
For the sake of simplicity, the value 
is chosen for a model whose output has an in-
creasing radius. In the contrary, for decreasing ra-
dius output,  is taken (see Table 3).

Table 3 : The two models

5    The identification process
In this section, a modified identification method-
ology for linear regression models is proposed.
Indeed, the latter exploits the concepts of inclu-
sion and tendency discussed previously for deter-
mining the parameters of a fuzzy model in the
form (22). 
When considering: 
• a set of N observed data (xj, Yj) where xj are

crisp inputs, sorted in an increasing order,
and Yj the corresponding fuzzy triangular
output

• a fuzzy model in the form (22), where its out-
put is defined on the domain D,

the identification statement lies in the answers
given to the following questions: 
1. In order to ensure the inclusion of all observed
data in the predicted ones for any , is it
possible to identify the fuzzy trapezoidal parame-
ters A0 and A1? In other words, what are the con-
straints to be taken in the optimization problem?
2. For a better representation of the observed
data tendencies, is it possible to determine the pa-
rameter shift which allows the integration of any
kind of spread in the model?

So, two main steps have to be discussed: the
choice of the value of shift and the parameters
model identification 
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+,[ ] SŶj
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5.1    The shift value determination
The first step of the identification concerns the
choice of the shift value according to the output
radius tendency. The most appropriate tendency
is determined from observed data, comparing the
initial output radius Rinit attached to minimal in-
puts with the final output radius Rfin attached to
maximal inputs. If Rinit < Rfin, an increasing ten-
dency is chosen, otherwise a decreasing tendency
is preferred. The corresponding shift value is de-
fined as: 
• If Rinit  Rfin then 
• If Rinit  Rfin then 
The Rnit and Rfin values are estimated by comput-
ing mean values from k data, that is Rinit =
mean(R1, R2, ..., Rk) and Rfin = mean(RN−k+1, ...,
RN−1, RN).
The next step of the identification concerns the
optimization of the fuzzy coefficients A0 and A1.
5.2    The identification method 
Like all linear regression identification methods,
the proposed one is based on the minimization of
a criterion under some constraints. 
A. The used criterion 

In the sequel, for the clarity and the simplicity of
notations we take: . So wj can be
positive or negative, depending on the appropri-
ate value of shift for the considered interval. In-
deed, for positive inputs, the shift is chosen equal
to xmin leads to wmin positive. In the opposite,
when negative inputs are considered, the shift is
taken as xmax, causing a wmax negative.
According to the model expression, the output of
the fuzzy model is a trapezoidal interval given by: 

(24)

where: 
(25)

The choice of the criterion to be minimized is also
an important issue. In conventional methods [10],
the used criteria are only based on the available
data, their minimization does not guarantee that
the identified model has the least global fuzziness
that could be achieved on the whole domain D. If

the identified model is to be used on the whole
domain D, it may be more judicious to prefer a
model with a lower global fuzziness, i.e. a less
imprecise model. Indeed,  it has been shown in
[1], that it is possible to minimize the whole
spread of the identified model for fuzzy triangular
output. In this case, the global fuzziness of the
model is the area covered by its output on D, i.e.
the integration of the wide of the output on D.
Moreover, as the level 0 and 1 are considered, it
is necessary to consider the vertical dimension.
So, the global fuzziness of the model is now de-
fined by a volume on D.
It can be stated that the output area represented by
a trapezoidal fuzzy number [14] is given by the
following expression: 

(26)

In this case, the volume delimited by the model
output on its whole domain D is given by:

(27)

By substitution of equation (26) in (27) it yields:

(28)

B. Assumed constraints
In the optimization procedure, the constraints
(20) and (21) must be respected. 
• For α = 1:

(29)

where

(30)

• For α = 0:

(31)

where: 

(32)

• In order to obtain a fuzzy interval, another
inclusion constraint must be verified, i.e.,  the
inclusion of the kernel into the support:

(33)

To sum up, the identification method is per-
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KŶ

+ SŶ
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formed by minimizing the criterion (28) under the
constraints  (29), (31) and (33).

6    A piecewise linear regression problem
In this section, the previous identification method
is used to identify a piecewise fuzzy linear model
of the form (34):

(34)

where , S is the number of seg-
ments which will compose the global model,

 represents the sum of several fuzzy inter-
vals. The coefficients Ak0 and Ak1 are fuzzy trap-
ezoidal intervals. The function  is equal
to 1 on  and to 0 otherwise.

At the beginning of the process, it is necessary to
find a good segmentation of the data set, i.e. to
determine in which intervals we have to identify
the different sub-models. As for a given data set,
output modal value tendency and output radius
one have to be considered, the segmentation is
made on both.
So, in order to finally get the different ,
k=1,...,S, we apply on collected data the follow-
ing method:

- first, we make a segmentation on observed
outputs modal values;
- on each interval got, we make another seg-
mentation on the corresponding observed
outputs radius values.

Then, we apply the identification method present-
ed in section 5 on each interval given by a seg-
mentation process, in order to determine the best
model on this domain for the volume criterion. 

7    Application on several examples
The proposed identification method is applied for
the first example presented in Table 1. The fol-
lowing model (35) defined on  is ob-
tained: 

(35)
with:

(36)

The model representation is illustrated in Figure
6. The optimal volume computed on  is
22.8.
In this case, it can be stated that all observed data
and included in the predicted ones. For example, 

Figure 6: Trapezoidal identified model
when j = 1, the observed and the predicted output
are respectively Y1 = [6.2, 9.8] and Ŷ 1 =
([4.45,8], [2.25,9.8]) which proves that the inclu-
sion of the observed output into the predicted one
is ensured  (see Figure 7). 

Figure 7 : Trapezoidal identified model representation 
(j=1). 

The identification method is also applied on the
second example, presented in Table 2 leads to the
following model:

(37)
with:

 and (38)

A representation of the model is given in Figure
8. 
The model output has a decreasing spread, and so
it well represents the data tendency. So, the ob-
tained model is less fuzzy than the one presented
in Figure 5.
Finally, the piecewise identification process is
applied on data proposed by Tanaka and Ishibu-
chi ([11], example 2). 
Two different segments can be distinguished
where the change point is x = 11. The observed
outputs on first segment present a globally de-
creasing spread. On the second segment, the
spread is globally increasing.

⊕
Ŷ x( ) Ak0 Ak1 x shiftk–( )⊕[ ]1

xmin
k xmax

k,[ ]
k 1=

S

∑=

shiftk xmin
k xmax

k,{ }∈

⊕
∑

1
xmin

k xmax
k,[ ]

xmin
k xmax

k,[ ]

xmin
k xmax

k,[ ]

D 1 5,[ ]=

Ŷ x( ) A0 A1 x 1–( )⊕=

A0 4.45 8,[ ] 2.25 9.8,[ ],( )=

A1 1.95 1.95,[ ] 1.95 2.1,[ ],( )=⎩
⎨
⎧

D 1 5,[ ]=

α∀ 0 1,[ ]∈

9.886.24.452.25

Y1Y1
^

Ŷ x( ) A0 A1 x 5–( )⊕=

D 1 5,[ ]=
A0 13 14,[ ] 13 14.6,[ ],( )=

A1 2 2,[ ] 1.3 3,[ ],( )=⎩
⎨
⎧
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Figure 8: Trapezoidal identified model representation.
Identification method leads to the following
piecewise model (39) (see Figure 9):

(39)

with: 

(40)

So, with a piecewise model and shifted inputs, a
good data representation can be achieved, with-
out using interactive coefficients as used by
Tanaka and Ishibuchi in [11]. 

Figure 9: A representation of a piecewise model

8    Conclusion
The proposed methodology is based on the using
of shifted models with trapezoidal fuzzy parame-
ters. In this case, it becomes possible to represent
output spreads either increasing or decreasing
with respect to inputs. Moreover, a total inclusion
of the observed data in the model output is en-
sured. Identifying such models leads to models
whose fuzziness is possibly lower than usually.
Further works concern the extension of the pro-
posed approach to multi-input problems and the

comparison of our method with regard to other
existing techniques, for example the granular
clustering proposed by Pedrycz in [7]. Moreover,
although the proposed method doesn’t preserve
the scalability, an extension can be find in order
to take into account this propriety. Another point
to be studied is the generalization of the identifi-
cation procedure to fuzzy inputs, in order to man-
age uncertainties on collected data.
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Ŷ x( ) A01 A11 x 11–( )+( )1 5 11,[ ]=

A02 A12 x 11–( )+( )1 11 17,[ ]+

A01 10 10.18,[ ] 9 11,[ ],( )=

A11 0.392 0.5,[ ] 0 1,[ ],( )=

A02 9.84 10,[ ] 9 11,[ ],( )=

A12 0.385 0.5,[ ] -0.83 1.83,[ ],( )=⎩
⎪
⎪
⎨
⎪
⎪
⎧
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