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Abstract

We extend crisp measures of disarray
to the vaguely defined context of nat-
ural languages, so as to tackle problems
of linguistic typology related to the or-
der of words. We deal both with short
abstract structure of the type “subject
verb object”, and with texts in the orig-
inal language and in a translation. Pre-
liminary experimental results are pro-
vided.
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1 Introduction

Every linguist would agree that words in Ital-
ian and Spanish have basically the same or-
der, while the “ordinal structure” changes
more and more as one moves from Italian to
English, or to German, or even to Turkish,
which is definitely far-away. While the order
of words is recognised as an important typo-
logic feature of languages, linguists have some
trouble if they want to deal with it in a “pre-
cise” way. Actually, the only ordinal struc-
ture which is dealt with at length in linguistic
typology is rather abstract and is related to
the position of subject S, verb V and object
O in a simple unmarked sentence like mater
filium amat and its translations (unmarked
means that one should avoid those changes
which may serve to connote ”emotionally”
the utterance, or which one uses in subor-
dinate clauses, and the like; actually, Latin
has a rather free word order). Unlike Latin,

which has SOV, modern European languages
prefer the order SVO, as in Italian, French,
Spanish, English, German, Russian, or also
Hebrew (’ivrit) etc. but Turkish, Basque and
modern Persian (Fārsi) have SOV like Latin,
while Irish (Gaeilge) has VSO. If one counts
the number of twiddles between adjacent posi-
tions, the ordinal distance between the Latin
SOV and the Italian SVO, or between the Ital-
ian SVO and the Irish VSO, is equal to one,
while it goes up to two for Latin compared
directly to Irish. This allows one to make a
“precise” statement like: thinking of subject,
object and verb in their unmarked order, the
ordinal distance between Italian and Irish is
strictly less that the ordinal distance between
Irish and Latin. As soon as one proceeds to
more ambitious tasks (think of a long text
with a translation) one has to be contented
with “feelings”, say the trouble taken by a si-
multaneous interpreter to do her/his job. The
point we wish to make in this paper is that one
can deal with ordinal differences in a precise
mathematical way, but that the mathematical
tools one needs are not those of crisp mathe-
matics, but rather those of its soft extensions
as fuzzy logic, due to the fact that natural lan-
guages have a “soft nature” which should not
be unnaturally forced into the crisp fetters of
traditional mathematics.

Let us begin by insisting on abstract struc-
tures as the one above, and let us introduce
the negation N: la madre non ama il figlio,
the mother does not love the son, die Mut-
ter liebt den Sohn nicht, or, in Turkish, ana
oğlu sevmiyor. If one takes a crisp attitude,
one ends up with SNVO in Italian and En-
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glish, SVON in German and SOVN in Turk-
ish. Linguists might complain, and say that
in English the verb “wraps up” the negation
(because of does), and even more clearly so in
Turkish: sev-m[e]-iyor, where sev carries the
meaning and iyor the functionality, compare
with seviyor, [she] loves). The linguist might
insist that also the orders SVNO in English
and SONV in Turkish are “true at some de-
gree”, and so she/he might re-discover fuzzy
logic, or at least might have a hunch of it. The
problem of fuzziness becomes much more dra-
matic when one moves from simple abstract
structures to long and complex “real” texts,
cf. Section 4 below.

What we need is to be able to measure the de-
gree of disarray between two permutations of
n distinct objects, i.e. the integers from 1 to n.
Two crisp answers are the bubble distance (so
called from the well-known bubble algorithm,
a suboptimal algorithm for sorting) and the
rank distance, already used in computational
linguistics [1] and tightly related to Spearman
footrule, as covered in [2], which is the basic
reference on measures of disarray. However,
we shall have to introduce a fuzzy generalisa-
tion of the notion of a permutation; all of this
is covered in Sections 2 and 3. Some prelim-
inary experimental results, both on abstract
structures and on texts, are presented in Sec-
tion 4, whose last paragraph is devoted to per-
spectives and future work. We have tried to
keep the main body of the paper accessible to
a wider audience interested in linguistic appli-
cations, and so have relegated more technical
material to the last two Sections 5 and 6.

When it comes to comparing the merits of
measures of disarray based on the bubble dis-
tance vs. measures based on the rank dis-
tance, one has to recall that bubble distances
are more accurate, while rank distances are
computationally quicker. In Section 5 we
hint at an alternative and promising fuzzy
approach to bubble disarrays to be applied
when dealing with short abstract structures.
Instead, the rank distance as in Section 3 rec-
ommends itself when processing long texts; cf.
Sections 4 and 5.

2 Ordinal distances: a reminder

Take a string x of n distinct “objects”, what-
ever their nature, and a permutation1 y of
those n objects. If one needs to measure the
degree of disarray of y with respect to x, pos-
sible answers are two ordinal distances called
the bubble distance and the rank distance: the
more its bubble or rank distance from x is
high, the more its disarray w.r. to x; cf. [2].
The bubble distance dB(x, y) simply counts
the minimal number of twiddles between ad-
jacent positions one needs to take y back to
x; it can be computed in quadratic time by
means of the bubble algorithm for sorting (ac-
tually, by its definition, the bubble distance
is the number of iterations the bubble algo-
rithm goes through). Instead the rank dis-
tance dR(x, y) is defined as:

dR(x, y) =
1
2

∑
all a

|ix(a)− iy(a)|

where ix(a) is the position occupied by object
a in the string x. The reason for dividing2

the sum by 2 is because we want that both
distances have the same unit, assigning the
value 1 to two strings which differ because of
a single twiddle.

Example. Take x =ROMA and y =AMOR.
Applying the bubbling algorithm, one has:
AMOR → AMRO → ARMO → RAMO
→ RAOM → ROAM → ROMA, and so
dB(x, y) = 6. Instead 2dR(x, y) = |ix(R) −
iy(R)| + |ix(O) − iy(O)| + |ix(M) − iy(M)| +
|ix(A)−iy(A)| = |1−4|+|2−3|+|3−2|+|4−1|,
and so dR(x, y) = 4.

Apart from their metric3 properties which are
easily proved (e.g. the triangle inequality), we

1A permutation can be always seen as a couple of
strings which have the same composition; if the first
string is somehow implicit (think of the first n integers
in their natural order, or of n letters in lexicographic
order) the permutation can be also seen as a single
string. This convenient “ambiguity” will be used be-
low.

2In the literature, usually one does not divide by 2.
We stress that Spearman footrule as in [2] coincides
with our rank distance only when x is made up by the
integers from 1 to n in their natural order; this how-
ever is enough to recycle most results of [2], because
of invariance (property i).

3In principle, a measure of disarray of y w.r. to x
needs not even to be symmetric; we shall come back to
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wish to stress at least two ordinal properties
of these distances:

i) Invariance: if φ is a permutation, then
d(φ(x), φ(y)) = d(x, y).

A consequence of invariance is that, when the
objects to permute are the integers from 1 to
n, one may often assume to no restriction that
x has the integers in their natural order, as we
do now when stating property ii) (yi is the i-
th entry of y):

ii) Monotonicity: let x be the first n integers
in their natural order, and let z be obtained
from y by a single twiddle between yi < yi+1;
then d(x, z) ≥ d(x, y).

More precisely, while in the case of the bubble
distance, each such twiddle between yi < yi+1

contributes 1 to the distance, in the case of the
rank distance the contribution is either 1 or 0.
It is 0 (in a way, the twiddle is “missed”) when
it occurs “remotely” enough from the original
positions (cf. [2] for details). In practise, high
distinct bubble distances may correspond to a
single “squashed” value of the rank distance.
If the rank distance may appear sloppier than
the bubble distance on large distances, it has a
paramount advantage when processing large-
scale data, as those mentioned in Section
4: namely, its computation takes only linear
time [3].

The maximal values and the expected values
follow in function of the string length n; we
shall use the term random distance, rather
than expected distance, because this is bet-
ter understood by linguists: the situation of
greatest confusion corresponds to the random
value, which one expects to find when y is
obtained by shuffling the components of x to-
tally at random. Instead, the maximal values
are obtained when y is the mirror image of
x, which implies that the ordinal structures
of x and y are deeply related (below angular
brackets denote degree of truth):

random max
rank n2−1

6
n2−〈n odd〉

4

bubble n2−n
4

n2−n
2

this point in Section 4 when dealing with large-scale
applications.

The curious asymmetry for the rank random
value, which lies at two thirds of the way, and
not at half way, once more can be accounted
for by the sloppiness of the rank distance on
high distances.

In the case of large-scale data, one has of-
ten to compare distances d(x, y) and d(u,w)
when the string length is not the same in the
two cases. That is why in Section 4 we have
normalised results on texts over the interval
[0, 100]. In the case of the rank distance, al-
ways thinking of better readability, we have
made use of a double normalisation: distances
up to the random value have been mapped to
the interval [0, 50], while distances from the
random value upwards have been mapped to
[50, 100]; this way, the normalised value cor-
responding to maximum confusion is always
50.

3 Measures of fuzzy disarray

As we have already seen above with “ab-
stract” structures, in linguistics one may have
splitting and, conversely, merging: this implies
that a string of distinct objects like abcdef ,
say, might permute to cbabf [de]: the object
b is at the same time before and after a, and
the two objects d and e have merged into the
single object positioned after f ; the square
brackets mean that the objects inside them
are not to be seen in the order as they are writ-
ten down, but rather in an undefined order.
Such a situation is compatible with several
crisp permutations, in our case four, namely
cbafde, cabfde, cbafed, cabfed.

Definition. A fuzzy permutation Y of a crisp
string x is a uniform fuzzy singleton whose
elements are crisp permutations of x.

Recall that a fuzzy singleton4 is a fuzzy set
whose fuzzy size

∑
i µi is constrained to be 1.

4We stress that one is not dealing with a ran-
dom permutation, but rather with a given permuta-
tion which happens to be ill-defined. In the present
context there is no probabilistic uncertainty, and not
even incomplete knowledge: the vagueness is here in-
trinsic in the nature of the context, and has nothing
to do with the ignorance of the agent, which, at least
in principle and in part, should be removable as the
agent acquires new information.
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So, because of uniformity, each permutation
in Y will be assigned the same degree of mem-
bership µi = 1/h, h = |Y | being the size of
the support of Y . A comment is to the point,
since uniformity may seem to be unnecessar-
ily restrictive: in practise, we end up dealing
with a non-specific object, rather than a fuzzy
set proper. A more general approach to fuzzy
permutations is put forward in Section 6, but
the “simplistic” approach taken in the body
of the paper appears to be the most conve-
nient for the linguistic applications we have
in mind; in particular, it spares the linguist
the necessity of specifying explicitly degrees
of membership for the component crisp per-
mutations, a stumbling block similar to the
one encountered in Bayesian statistics when
one has to specify prior probabilities.

Let us move to measures of disarray, and go
back to Y as above. The crisp permutations
which make up the fuzzy permutation Y have
bubble distances 5, 4, 6, 5 from x = abcdef ,
and rank distances 4, 4, 4, 4, respectively. We
do not want to deal with a distance which is
a fuzzy number (cf. however Section 6) and so
we shall aggregate the h crisp integer distances
to a single crisp value, simply by resorting to
averages, which are widely understood:

d(x, Y ) =
∑

1≤j≤h
µi d(x, yj) =

=
1
|Y |

∑
1≤j≤h

d(x, yj) (1)

E.g. with x and Y as above, the component
distances aggregate to a crisp bubble distance
equal to 5 and to a rank distance equal to 4,
as the linguist would expect.

Starting from a crisp string x is enough to
deal with applications on large-scale data as
those mentioned in Section 4, but in Section
5 we have to cover also the more problematic
case when we want to measure the disarray
of Y w.r. to a string X whose ordering is it-
self fuzzy, as needed to deal with the “small”
abstract structures of linguistic typology.

4 Experimental results and
perspectives

We begin by an “abstract” structures, think-
ing of the Italian sentences la madre non ama
il figlio SNVO, and its translations in French,
English, German and Turkish, la mère n’aime
pas le fils SNVNO, the mother does not love
the son SVNVO, die Mutter liebt den Sohn
nicht SVON, and ama oğlu sevmiyor SOVNV,
respectively. In English and in Turkish the
verb “wraps up” the negation, while in French
it is the negation ne ... pas which wraps up
the verb. The length is n = 4, for which the
random values are 3 and 2.5, while the maxi-
mum values are 4 and 6. In the table entries
are not doubled when dR = dB:

Fr En Ge Tu
It 0.5 0.5 2 2; 2.25
Fr 0.5 1.5 2; 2.5
En 1.5 2; 2.25
Ge 1.75; 2

When comparing French, English and Turk-
ish, we need a more general (and definitely
more problematic) approach to fuzzy permu-
tations, as explained and commented upon in
Section 5.

We have also made some very preliminary
experiments on the order of words in real
texts; it is precisely the difficulties encoun-
tered which have convinced us of the necessity
to move to fuzzy maths. We have used the
bilingual book [4] for German readers, tak-
ing paragraphs at random from short stories
in 6 different languages, and computing dis-
tances starting from the German translations,
where we have singled out the variable parts of
speech plus the negation nicht. So, the mea-
sures of disarray we got are non-symmetric
disarrays from rather than symmetric disar-
rays between. We reproduce preliminary re-
sults normalised on the interval [0, 100] (in the
table stars denote normalisation). The reader
is warned that nothing like statistical signif-
icance has to be expected: all this is rather
sort of “warming up” before coping with re-
ally large texts, so as to avoid embarking on
a long and difficult journey with an inappro-
priate baggage. We stress that web resources,

170 Proceedings of IPMU’08



inclusive of dictionaries and other tools avail-
able for automatic translations, allow one to
sample really extensive data, so as to answer
reliably questions like: how large is ordinal
distance of Italian from Turkish, or of Turk-
ish from Italian? Clearly, in these cases the
linear complexity5 of the rank distance turns
out to be a decisive computational advantage.

from German French Spanish Turkish
d∗R 3.06 3.57 3.75
d∗B 2.53 2.88 2.83

from German Russian English Italian
d∗R 3.33 2.08 3.90
d∗B 2.26 1.65 3.39

Conclusion and open problems. The approach
taken in the body of this paper is both easily
understood by people outside the fuzzy com-
munity and computationally safe on large-
scale data. However, to process effectively
large-scale date one will need to extend and
improve the fuzzy tools we have put forward
in this paper (e.g. we have not covered dele-
tions and insertions), beside specifying in de-
tail fast algorithms for the rank distance. As
for short abstract structures, we are currently
working on an alternative fuzzy version of the
“more precise” bubble distance, extended in
the spirit of the edit distance; cf. Section 6.

5 Double fuzziness

In Section 4, when X and Y are both fuzzy we
have simply weighted the distances d(xi, yj)
by means of the uniform weights 1/hk; in
practise, XY is assumed to be a uniform fuzzy
singleton of couples of permutations, |X| = h,
|Y | = k, 1 ≤ i ≤ h, 1 ≤ j ≤ k. However, this
has some serious drawbacks. The first is that
one obtains positive self-distances d(X,X) as
soon as X is strictly fuzzy. This is not new
in a fuzzy setting, since after all the fuzzy
Hamming distance6 has the same drawback.

5With respect to usual rank distances, no increase
in complexity occurs as soon as one assumes that
mergings and splittings are bounded, in the sense that
a letter is repeated at most K times, and at most K
symbols merge, and this is reasonable in our context.

6Remarkably, the fuzzy Hamming distance had al-
ready been used as early as 1967 by Ž. Muljačić in
computational linguistics [5]: a further argument that
the mathematics of natural languages has to be fuzzy.

Rather, a more worrying fact is the follow-
ing: both V NV , as in English, and NVN ,
as in French, give rise to the same couples
{NV, V N}, and so information loss has oc-
curred, which is quite undesirable. To get rid
of both drawbacks, we deem that one should
turn to modified ordinal distances, such as
to be applied directly to non-crisp orderings
as those entailed by splitting and merging.
In the case of the bubble distance we might
give smaller “costs” to twiddles involving non-
crisp positions, in the spirit of Levenstein’s
edit distance. E.g. SOVNV → SVONV →
SVNOV→ SVNVO, with twiddle costs equal
to 1/2, 1, 1/2, respectively, would reduce the
distance between Turkish and English to 2, a
result which the linguist might find more nat-
ural than 2.5 as in the table. From French
to English the new distance would remain 1:
SNVNO → SNNVO → SNVO → SNVVO →
SVNVO, with costs equal to 1/2, 0, 0, 1/2
for each arrow; we are (legitimately) assum-
ing that splitting and merging of the same
symbol has cost 0. When splitting and merg-
ing are limited to couples, as is the case here,
it is easy to prove that, when one string is
crisp, the edit-distance approach is equivalent
to ours in Section 3 (use e.g. induction on the
number of twiddles). More care needs to be
taken in the general case, but this falls outside
the scope of this paper.

Unfortunately, if the bubble distance is a spe-
cial case of the edit distance, the rank distance
is not, and so a similar way-out does not ap-
pear to be feasible (nor desirable, since edit
distances have quadratic complexity). Now,
the more appealing applications are precisely
those to very long texts, where use of the
linear-complexity rank distance recommends
itself, but in this case one may proceed as we
have done in Section 4, where double fuzzi-
ness may be shunned to the reasonable price
of having to deal with “distances from” rather
than “distances between”.

Proceedings of IPMU’08 171



6 An addendum on fuzzy
permutations

With more generality than in the body of the
paper, a fuzzy permutation of a crisp string x
may be defined as a fuzzy singleton which is
not bound to be uniform. As for aggregations,
one may use formula (1) omitting the last side,
and so obtain a weighted average of the crisp
distances d(x, yi) with weights µi. We do not
feel that one should relinquish the constraint
that the fuzzy set is a fuzzy singleton (that
we are dealing with one permutation, be it
fuzzy), else one may end up getting counter-
intuitive results, because a component permu-
tation might matter more in an average that
it does when it stands crisply by itself.

Actually, fuzzy permutations might be de-
fined also in a different way: one might specify
the degrees of truth of statements as “letter a
permutes to letter b”, and end up with a fuzzy
matrix of degrees of truth. Let us work out an
example to show the difference between the
two approaches. We assume that one starts
with a fuzzy permutation Y made up of h
crisp permutations yi of x, each with degree
of membership µi, 1 ≤ i ≤ h. As an exam-
ple, take n = h = 3, Y uniform with support
{abc; bac; acb; cba}. Now we try to convert Y
to a fuzzy permutation Z defined by a ma-
trix “in a natural way”. In the matrix we set
να,β equal to maxi µi for any two letters α, β,
where the maximum is taken over values of
the index i for which yi permutes α to β (in
the example, rows and column headings are
a, b, c). The idea is that α permutes to β iff
there is at least one permutation yi where this
happens, either the first, or the second, ..., or
the h-th; then to use the maximum operator
for logical disjunctions. In the example one
obtains a 3 × 3 matrix representing Z whose
9 entries are all equal to 1/4. However, W
uniform with support {cba; bca; cab; abc} gives
rise to exactly the same Z as does Y , and so
undesirable information loss has occurred in
the conversion.

We add a comment of the “fuzziness” of our
distances. Let us have a crisp universe A, a
crisp distance d between the crisp objects of

A, which in our case are permutations. By
applying the extension principle, one obtains
a fuzzy distance d(X,Y ) between fuzzy sets
of A which is a fuzzy number (cf. e.g. [6]),
and which one might defuzzify by means of
a suitable aggregator. For simplicity we take
X = x crisp, and so the formula reads:

〈m ∈ d(x, Y )〉 = max
d(x,y)=m

〈y ∈ Y 〉

(m is a crisp number, in our case a crisp inte-
ger, angular brackets denote degree of mem-
bership). Clearly, if there are two or more
values yi which give the same m = d(x, yi),
we are at variance with the approach taken
in Section 3 and Appendix A, where each of
these values gives its own contribution sepa-
rately.
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