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Abstract

In this paper we will deal with
the measure of non-adaptability bet-
ween partitions. This concept was
especially defined in order to com-
pare partitions in the context of
pseudo-questionnaires, even though
it can be used in any general context
where the comparison of two parti-
tions is required. In particular, we
will characterize the family of non-
adaptability measures which satisfy
the branching property. A proce-
dure to construct all the measures
in this class will be given and some
equivalent definitions presented.
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1 Introduction

Pseudoquestionnaires are the formalization of
inquiring processes, that is, the assignment of
an element to a subset of an “a priori” gi-
ven classification by means of a collection of
indirect questions. The earlier version by Te-
rrenoire ([17, 21]) was defined in terms of pro-
babilities of questions and answers. However,
in many situations no probability distribution
is available and classifying processes have to
be built up. Bertoluzza (see [1, 4]) propo-
sed a generalization based on the fact that
the answers, which are propositions, can be
represented, via Stone’s Theorem, by subsets

of a suitable reference space. In this context
questions are described by expected answers,
that is, by a collection of subsets, which is a
complete or an incomplete partition.

A classical example of pseudoquestionnaire
can be found in the medical environment:
the “a priori” given classification is the class
of sets Ai, each representing the proposition
“the disease is δi” (Ai are supposed to be pair-
wise disjointed), and questions can be clini-
cal tests, radiographs, and so on. In general,
they do not reach an unquestionable classifi-
cation and they only give a sequence of par-
titions which approximate more and more to
the right individuation of diseases.

As the previous example shows, it is very dif-
ficult to obtain a complete individuation pro-
cess. Therefore, it is natural to ask until a
partition which approximates to the “a priori”
given one is obtained, and consequently, a
measure of “fitting” is needed. Several proxi-
mity measures have been proposed in order to
compare classifications derived from different
clustering algorithms (for a review, see [8])
and this is still an ongoing search (see, for ins-
tance, [12, 20]). A solution especially adapted
to our problem in the pseudo-questionnaire
context was given in [2]. This solution is ba-
sed on some previous papers of the authors
about this topic (see, for instance, [15, 16]).
In this work, such measure was axiomatica-
lly defined and named non-adaptability mea-
sure. It should also be noted, for practical
purposes, that it is convenient to restrict this
general class of measures to some particular
subclasses, which allows us to build up the
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measure in a recurrent way. This restriction is
very usual in Information Theory for Uncer-
tainty Measures (see, among others, [3, 19])
and we have used a parallel scheme for non-
adaptability-measures. Thus, we have consi-
dered two main methods in order to build the
final classification:

• By successive aggregations: the classi-
fication is built by adding any possible
result of it one by one. By means of
this scheme we obtain the compositive
non-adaptability measures. In [2] we
have characterized left, right and tota-
lly compositive non-adaptability measu-
res by means of t-norms and t-conorms
([9]).

• By successive divisions: Taking the po-
pulation as a starting point, we split it
into two parts, three parts and so on
until we obtain the final classification.
By means of this scheme we will obtain
the branching non-adaptability measu-
res. In this paper we have characterized
the non-adaptability measures satisfying
the branching property.

Thus, this communication is organized as fo-
llows: in Section 2 we will present a brief
review of already-known concepts of parti-
tions and non-adaptability measures. In Sec-
tion 3 we will introduce the concept of bran-
ching non-adaptability measures and propose
three possible definitions for this concept. We
will also prove that all of them are equiva-
lent and we will characterize this class of non-
adaptability measures. This characterization
will give us a method of construction for this
kind of measures. We will finish with some
concluding remarks and the presentation of
some open problems.

2 Basic concepts

In this section, some definitions needed in the
rest of the paper are recalled. For a more
extended revision of these concepts, see [2].

2.1 Partitions

Fist of all, let us establish the space in which
we are working.

Let (Ω,A) be a measurable space, where Ω
is the set of elementary events and A the al-
gebra of subsets of Ω formed by the obser-
vable events. An experience over (Ω,A) is
defined (see, for instance, [7, 11, 19]) as a fi-
nite collection of incompatible events repre-
sented by a partition Π1 = {A1i}n1

i=1 such
that A1i ∈ A, i = 1, . . . , n1. A partition
Π1 is said to be complete if, and only if,
Supp(Π1) = Ω, where Supp(Π1) denotes the
support of Π1, that is, Supp(Π1) = ∪n1

i=1A1i.
In other case, if Supp(Π1) ⊂ Ω, Π1 is said
to be incomplete. Both kind of partitions,
complete and incomplete, made sense in the
pseudo-questionnaires context, as it was ex-
plained in [2]. From now on, for simplicity,
we will consider the following notation for the
elements and support of a partition: the par-
tition Πj is formed by the elements {Aji}nj

i=1

and its support is Aj .

The collection of possible experiences is deno-
ted by E . For sake of simplicity, we suppose
{A} ∈ E for all A ∈ A. Moreover, we consi-
der on E a partial order relation and the two
usual operations, product and union, defined
as follows.

Definition 2.1 Let (Ω,A) a measurable
space, let E be the collection of finite parti-
tions on (Ω,A) and let Π1 and Π2 be two
partitions in E.

• Π1 is a subpartition of Π2 ( Π1 v Π2) if,
and only if, any element of Π1 is a subset
of an element of Π2, that is,

Π1 v Π2 ⇔
∀A1i ∈ Π1, ∃A2j ∈ Π2 |A1i ⊆ A2j .

• The product of Π1 and Π2 (Π1 ∧ Π2) is
the partition formed by the intersections
between each element of Π1 and each ele-
ment of Π2, that is,

Π1∧Π2 = {A1i∩A2j |A1i ∈ Π1, A2j ∈ Π2}.
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• If Supp(Π1) ∩ Supp(Π2) = ∅, the union
of Π1 and Π2 (Π1 ∨ Π2) is the partition
obtained jointing the elements of Π1 and
the elements of Π2, that is,

Π1 ∨Π2 = {Ai |Ai ∈ Π1 or Ai ∈ Π2}.

Remark 2.2 Obviously, Supp(Π1) ⊆
Supp(Π2) if Π1 v Π2. In the particular
case, Supp(Π1) = Supp(Π2) a subpartition
is a refinement. Thus, the concept of sub-
partition generalizes the classical concept of
refinement.

On the other hand, it is also obvious that
Supp(Π1 ∧ Π2) = Supp(Π1) ∩ Supp(Π2) and
Supp(Π1 ∨Π2) = Supp(Π1) ∪ Supp(Π2).

As we already commented, our purpose was to
compare a partition, obtained by a sequence
of questions with a reference partition. Thus,
we are going to work into a subset of E × E ,
which is formed by the pairs of experiences
with ordered supports, by the content rela-
tion. More precisely,

E2 = {(Π1, Π2) ∈ E×E|Supp(Π1) ⊆ Supp(Π2)}.

Thus, from now on, we are going to work into
the space (Ω,A, E2), which will be called com-
parison measurable space.

2.2 Non-adaptability measures

In the set E2 we have considered suita-
ble, mainly in the pseudoquestionnaire en-
vironment, the following definition of non-
adaptability measure. The idea behind this
concept was that for any partition Π in
E , we are interested in classifying the par-
titions, so that the “closer” partitions are
the best adapted to Π (smaller value of the
non-adaptability measure) and the “more far
away” ones the worst adapted to Π (greater
value of the non-adaptability measure).

Definition 2.3 [2] Let (Ω,A, E2) be a com-
parison measurable space. A map ∆ : E2 −→
R+ is a non-adaptability measure if, and only
if, we have that

(N1) ∆(Π1, Π1) = 0, for any Π1 ∈ E.

(N2) ∆(Π1,Π3) ≤ ∆(Π2, Π3), for any
(Π2, Π3) ∈ E2 and any Π1 ∈ E with
Π1 v Π2.

(N3) ∆(Π3,Π1) ≥ ∆(Π3, Π2), for any
(Π3, Π1) ∈ E2 and any Π2 ∈ E with
Π1 v Π2.

These three axioms arise in a natural way
and they can be easily interpreted. The first
axiom is understood as follows: if the goal is
reached, that is, if we have obtained the final
partition, then the adaptability is maximum
(∆(Π1,Π1) = 0). For the second one, if we
do more questions, then the adaptability ob-
tained is, at least, as good than if we stop at
this moment (∆(Π1, Π3) ≤ ∆(Π2, Π3)). Mo-
reover, at the third axiom we establish that if
the final partition has more elements, then it
is more difficult to reach to it (∆(Π3, Π1) ≥
∆(Π3, Π2)).

Example 2.4 As we proven in Example 10
of [2], for any space (Ω,A, E2) and any pro-
bability measure P on A, the map

∆(Π1,Π2) =
n1

S
i=1

n2

min
j=1

P (A1i −A2j)

is a non-adaptability measure, where S is a
triangular conorm (see [9]), that is, an increa-
sing, commutative and associative binary ope-
ration on [0, 1] with neutral element 0. Two
of the most important triangular conorms are
the Lukasiewicz t-conorm SL(x, y) = min(x+
y, 1) and the maximum operator SM (x, y) =
max(x, y). Thus, two different examples of
non-adaptability measures are:

∆1(Π1, Π2) =
n1∑
i=1

n2

min
j=1

P (A1i −A2j),

and

∆2(Π1, Π2) =
n1max
i=1

n2

min
j=1

P (A1i −A2j).

As an immediate consequence of Definition
2.3 we had proven several properties for a non-
adaptability measures, which are related in
the following proposition.
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Proposition 2.5 [2] Let (Ω,A, E2) be a com-
parison measurable space and let ∆ be a non-
adaptability measure on it. The following pro-
perties are satisfied:

1. ∆(Π1, Π2) = 0, ∀Π1, Π2 ∈ E such that
Π1 v Π2.

2. ∆(Π1 ∧ Π2, Π) ≤ min{∆(Π1,Π),
∆(Π2, Π)}, ∀Π1, Π2,Π ∈ E with
(Π1, Π), (Π2, Π) ∈ E2.

3. ∆(Π, Π1 ∧ Π2) ≥ max{∆(Π,Π1),
∆(Π, Π2)}, ∀Π1, Π2, Π ∈ E with
(Π, Π1 ∧Π2) ∈ E2.

4. ∆(Π1 ∧ Π2, Πi) = 0, i = 1, 2, ∀Π1, Π2 ∈
E.

5. max{∆(Π1, Π), ∆(Π2, Π)} ≤ ∆(Π1 ∨
Π2, Π), ∀Π1,Π2, Π ∈ E with Supp(Π1) ∩
Supp(Π2) = ∅ and (Π1 ∨Π2,Π) ∈ E2.

6. min{∆(Π, Π1), ∆(Π,Π2)} ≥ ∆(Π, Π1 ∨
Π2), ∀Π1, Π2, Π ∈ E with Supp(Π1) ∩
Supp(Π2) = ∅ and (Π, Π1), (Π,Π2) ∈ E2.

7. ∆(Πi, Π1∨Π2) = 0, i = 1, 2, ∀Π1, Π2 ∈ E
with Supp(Π1) ∩ Supp(Π2) = ∅.

8. ∆(Π1, Π) = ∆(Π2, Π), ∀Π1, Π2, Π ∈ E
with Π1 = Π2 ∨ {∅} and (Π1,Π) ∈ E2.

9. ∆(Π, Π1) = ∆(Π, Π2), ∀Π1, Π2, Π ∈ E
with Π1 = Π2 ∨ {∅} and (Π,Π2) ∈ E2.

We have developed a theory for “non-
adaptability” rather than a theory for “adap-
tability” since this is the common way of
quantifying the degree of similarity/difference
in our context. Thus, for instance, the usual
measure for comparing two probability distri-
butions is a divergence measure (see, among
many other, [10, 18]) instead of a similarity
measure. In any case, a non-increasing fun-
ction could transform a non-adaptability mea-
sure into an adaptability measure in those
contexts in which intuition could pose a
problem when dealing with non-adaptability
measures.

3 Branching non-adaptability
measures

As in a pseudoquestionnaire, by means of the
questions, we split subsets in smaller ones, it
seems reasonable to ask the non-adaptability
measure to satisfy the branching property. In
this case, since a new question supposes a
refinement of the first argument of the non-
adaptability measure, the partition to be split
is precisely this one.

Definition 3.1 A measure of non-
adaptability ∆ on (Ω,A, E2) is said to
be type 1 branching if there exists a map
H : A × A × A × E −→ R+ such that, for
any pair of partitions (Π1, Π2) ∈ E2 and any
element A11 in Π1, we have that

∆(Π1, Π2)−∆({A′11, A
′′
11, A12, . . . , A1n1},Π2)

= H(A′11, A
′′
11, A1, Π2)

where {A′11, A
′′
11} is any partition of A11.

Example 3.2 The non-adaptability measu-
re ∆1 defined in Example 2.4 is bran-
ching, since the difference ∆(Π1, Π2) −
∆({A′11, A

′′
11, A12, . . . , A1n1}, Π2) is equal to

n2

min
j=1

P ((A′11 ∪A′′11)−A2j)

−
n2

min
j=1

P (A′11 −A2j)−
n2

min
j=1

P (A′′11 −A2j)

that is, this difference only depends on A′11,
A′′11 and Π2.

However, the non-adaptability measure ∆2,
introduced at the same example, is not
branching in general, as it shows the fo-
llowing example. Let us consider Ω =
{x1, x2, x3, x4}, A = P(Ω), the probabi-
lity measure P ({xi}) = 0.i,∀xi ∈ Ω and
the partitions Π1 = {{x1, x2}, {x3, x4}},
Π2 = {{x1}, {x2}, {x3}, {x4}} and Π3 =
{{x1, x2}, {x3}, {x4}}. We have that

∆2(Π1,Π2)−∆2({{x1}, {x2}, {x3, x4}},Π2)
= 0.3− 0.3 = 0,

∆2(Π3,Π2)−∆2(Π2,Π2) = 0.1− 0 = 0.1.

If ∆2 is branching then, by Defini-
tion 3.1, both differences are equal to
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H({x1}, {x2}, Ω, Π2), but it is not possible
the map H assumes at the same time the
values 0 and 0.1, which is a contradiction.

From Definition 3.1, it is easy to see the mea-
ning of the branching property. However, this
definition is not very operative from a mathe-
matical point of view. Thus, we had to recon-
sider a new definition of the branching pro-
perty, which is easily characterizable. At the
end of this section, we will prove both defini-
tions (types 1 and 2) are the same.

Definition 3.3 A measure of non-
adaptability ∆ on (Ω,A, E2) is said to
be type 2 branching if, and only if, there
exists a map F : A×A×E −→ R+ such that
for any pair of partitions (Π1, Π2) in E2,

∆(Π1, Π2)−∆({A11 ∩A21, . . . , A11 ∩A2n2 ,
A12, . . . , A1n1}, Π2) = F (A11, A1, Π2).

Firstly, we are going to present the proper-
ties of the map associated to a branching
non-adaptability measure. After that, we will
show these properties characterize the bran-
ching non-adaptability measures.

Theorem 3.4 Let ∆ be a type 2 branching
non-adaptability measure on (Ω,A, E2). Then
there exists a map G : A×A×E −→ R+ fulfills
the following conditions, for any A,B, C ∈ A
and any Π1,Π2 ∈ E:

1. If {A} v Π1 then G(A,B,Π1) = 0.

2. If B ⊆ C, then
G(A,B,Π1) ≤ G(A,C,Π1).

3. If A ⊆ B, then G(A,B ∪C, Π1) + G(B−
A,B ∪ C, Π1) ≤ G(B,B ∪ C, Π1).

4. If Π1 v Π2, then G(A,A ∪ B, Π1) ≥
G(A,A ∪B, Π2).

such that

∆(Π1, Π2) =
n1∑
i=1

G(A1i, A1, Π2).

We have seen that any branching non-
adaptability measure can be decomposed as

the sum of G. Now, we are going to prove that
this decomposition characterizes the measures
with the branching property.

Theorem 3.5 Let G : A×A× E −→ R+ be
a map such that

1. If {A} v Π1 then G(A,B,Π1) = 0.

2. If B ⊆ C, then
G(A,B,Π1) ≤ G(A,C,Π1).

3. If A ⊆ B, then G(A,B ∪C, Π1) + G(B−
A,B ∪ C, Π1) ≤ G(B, B ∪ C, Π1).

4. If Π1 v Π2, then G(A, A ∪ B, Π1) ≥
G(A,A ∪B, Π2).

then the map ∆ : E2 −→ R+ defined by

∆(Π1, Π2) =
n1∑
i=1

G(A1i, A1, Π2)

is a type 2 branching non-adaptability mea-
sure.

The idea behind the concept of branching
is that the difference only depends on the
changed elements and the reference partition.
Other way to formalize this idea, already
used for uncertainty measures in Information
Theory (see, for instance, [19]), allows us to
define a third type of the branching property.

Definition 3.6 A measure of non-
adaptability ∆ on (Ω,A, E2) is said to
be type 3 branching if, and only if,
for any three partitions Π1,Π2, Π3 in
E with Supp(Π1) ∩ Supp(Π2) = ∅ and
(Π1 ∨Π2, Π3) ∈ E2, we have that

∆(Π1 ∨Π2, Π3)−∆({A1} ∨Π2,Π3)
= ∆(Π1 ∨ {A2}, Π3)−∆({A1} ∨ {A2}, Π3).

We have collected the idea of branching by
means of three different definitions (type 1, 2
and 3). However, the following theorem pro-
ves that the these definitions are exactly the
same.

Theorem 3.7 Let ∆ be a non-adaptability
measure on (Ω,A, E2). The following state-
ments are equivalent:
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1. ∆ has the type 1 branching property.

2. ∆ has the type 2 branching property.

3. ∆ has the type 3 branching property.

Thus, from now on we will simply say bran-
ching non-adaptability measure, without any
specification about the type, for any non-
adaptability measure fulfilling the require-
ment imposed in Definition 3.1, Definition 3.3
or Definition 3.6. The explicit form of this
kind of measures is presented at the following
corollary.

Corollary 3.8 If a non-adaptability measure
has the branching property then it can be de-
composed as

∆(Π1, Π2) =
n1∑
i=1

∆({(A1 −A1i) ∩A21, . . . ,

(A1 −A1i) ∩A2n2 , A1i ∩A2}, Π2)

for any (Π1, Π2) ∈ E2.

4 Conclusion

Since in a pseudoquestionnaire we split sub-
sets in smaller ones by means of questions, it
seems reasonable to ask the non-adaptability
measure to satisfy the branching property. In
this case, since a new question supposes a
refinement of the first argument of the non-
adaptability measure, the partition to be split
is precisely this one. Non-adaptability mea-
sures are considered an essential tool in the
analysis of pseudo-questionnaires, although it
could also be considered in any field where a
classification of a reference partition is requi-
red. In this work we have focused our atten-
tion on a particular family of non-adaptability
measures: the branching non-adaptability
measures. It is the family of measures with
an appropriate behavior when a new question
is made in the pseudo-questionnaire. We have
presented three different definitions of bran-
ching property which try to convey this idea
of good behavior for new questions and finally
proven that they are actually the same. Mo-
reover, we have completely characterized the
branching non-adaptability measures as the

sum, in any element of the first partition, of a
function of three arguments: this element, the
support of the first partition and the second
partition.

In the future, other possible situations could
be analyzed, such as the sense and meaning of
a branching property for the second argument
of the non-adaptability measure. Apart from
that, we would also like to be able to define
the non-adaptability measure between fuzzy
partitions, where we would use our previous
studies about fuzzy partitions ([6, 13, 14]) and
about comparison between fuzzy sets ([5, 15]).
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