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Abstract

In this paper we introduce an al-
ternative representation of imprecise
properties that verify all the logi-
cal equivalencies of the crisp case.
An imprecise property (or propo-
sition) on the objects of an uni-
verse X is represented by a col-
lection of crisp realizations, each
one corresponding to a Restriction
Level (RL). A fuzzy subset of X
can be seen as a summary of a
RL-representation, both representa-
tions being equivalent only for the
combination of atomic properties via
maximum and minimum. Our ap-
proach allows us to extend crisp op-
erations to the imprecise case, keep-
ing all the properties of the crisp
case, notably those involving nega-
tion. Keywords: Representation
of imprecision, fuzzy sets, restriction
level, negation

1 Introduction

Fuzzy sets are one of the best models for rep-
resenting and reasoning with imprecise prop-
erties. They have been successfully employed
to deal with imprecision in many different ar-
eas. This has been possible because the clas-
sical set operations and concepts defined on
sets have been extended to the fuzzy case. In
general, there are many different ways to ex-
tend operations and definitions. A well known

example are set intersection, union, and com-
plement, that can be extended to the fuzzy
case in a virtually infinite number of ways via
t-norms, t-conorms, and fuzzy negations.

In this process of extension of operations and
definitions to the fuzzy case, many properties
of their classical counterparts can be lost or
must be redefined in different ways. As an
example, the law of excluded middle does not
hold for most of the combinations of t-norm,
t-conorm, and negation. One important prob-
lem of fuzzy logic is how to determine the
most suitable fuzzy extensions of a certain
crisp operation, what properties should be
kept and what are its semantics.

This problem arises frequently when the op-
erations and definitions we want to extend in-
volve negations (eq. complement). This is
the case with the definition of set difference.
Given crisp sets R and S, R\S = R ∩ S̄ = T
so that T ∪ (R ∩ S) = R. However, for many
of the most employed t-norms, t-conorms
and negations, the previous properties do not
hold. In particular, if F is a fuzzy set defined
on a crisp universe X, X\F = X ∩ F̄ = F̄
but F ∪ F̄ = X is not always true since the
law of excluded middle does not hold in gen-
eral. Another problem involving negation is
the extension of implication as ¬F ∨ G and
the corresponding set interpretation as a de-
gree of inclusion (in particular, the original
definitions of fuzzy set inclusion and equality
are crisp).

These problems, and others, are very impor-
tant in certain applications. The extension of
set difference plays an important role in fuzzy
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database queries and in fuzzy arithmetic when
we want to operate with cardinalities of fuzzy
sets (without the law of excluded middle, one
cannot expect card(F̄ ) = card(X)− card(F )
in general for a cardinality measure card
yielding fuzzy integers). Implication is cru-
cial for fuzzy reasoning and in the extension
of properties that include implication in its
definition, like transitivity of fuzzy relations
for instance, i.e., (R(a, b)∧R(b, c)) → R(a, c).
There are many other examples.

In this paper we introduce an alternative ex-
tensive representation of imprecision that ver-
ify all the classical properties of crisp sets, in-
cluding those involving negation. The main
contribution of our approach is that the ex-
tension of crisp concepts like operations, defi-
nitions and measures is direct and simple, and
maintain all the properties of the crisp case,
making the approach useful for applications
that require those properties. The represen-
tation is based on the idea of restriction level
(RL). An imprecise property is represented by
a collection of crisp realizations or representa-
tives, each one corresponding to a RL. Fuzzy
sets, as represented by a collection of α-cuts,
are a particular case of a RL representation
where each restriction level corresponds to a
value α. However, the new representation is
more general, since the representatives are not
necessarily nested with respect to inclusion.
Fuzzy sets are very important for our repre-
sentation since they are a way to obtain the
RL representation of atomic properties, and
can also be employed to obtain a summary of
the representation for non-atomic properties.

2 Restriction-level representation

2.1 Atomic Properties and
Restriction levels

Given a knowledge representation problem,
an atomic property is a property that cannot
be defined in terms of other properties in our
problem. If the atomic property is imprecise,
fulfilment is a matter of degree, i.e., some ob-
jects verify the property, some others don’t,
and the rest verify it to a certain extent. In
this paper we shall assume the usual represen-

tation of fuzzy sets for atomic properties, i.e.,
degrees are in [0, 1] with the usual meaning.

In our approach, a restriction is a rule em-
ployed to obtain a crisp realization of an im-
precise property. This rule specifies how to
make a crisp decision about whether a certain
object verifies or not the imprecise property
if we use a certain level of restriction, i.e., if
we are strict to a certain extent or level.

For the sake of coherence, in the case of
atomic properties with imprecision degrees
in [0, 1], this kind of rules are of the form
degree ≥ α with α ∈ (0, 1], and hence restric-
tion levels are associated to values α ∈ (0, 1].
In the same case, the crisp realization of an
atomic imprecise property represented by a
fuzzy set F in the restriction level α corre-
sponds to the α-cut Fα. In other words, Fα is
a crisp realization (representative, version) of
F at the level α if we relax our restriction on
the fulfilment of F so that ∀x ∈ X we accept
x ∈ F iff F (x) ≥ α.

In this paper we consider that an imprecise
property A is represented by a finite set of
crisp realizations corresponding to a set of
RLs ΛA ⊆ (0, 1] containing at least the level
α = 1. This is not a practical limitation
since humans are able to distinguish a lim-
ited number of restriction or precision levels
and, in practice, the limit in precision and
storage of computers allows us to work with a
finite number of degrees (and consequently, of
levels) only. We introduce the following defi-
nition:

Definition 2.1 A RL-set Λ is a finite set of
restriction levels Λ = {α1, . . . , αm} verifying
1 = α1 > α2 > · · · > αm > αm+1 = 0, m ≥ 1.

In a practical situation, the RL-set for an
atomic property represented by a fuzzy set A
is defined as follows:

Definition 2.2 Let A be a fuzzy set on X.
Then

ΛA = {A(x) | x ∈ support(A)} ∪ {1} (1)

The RL-set employed to represent an impre-
cise property is obtained as the union of the
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RL-sets of the atomic properties in terms of
which the property is defined. We explain this
idea in section 3.

2.2 Representation

We define a restriction-level representation
(RL-representation for short) of an imprecise
property on X as follows:

Definition 2.3 A RL-representation is a
pair (Λ, ρ) where Λ is a RL-set and ρ is a
function

ρ : Λ → P(X) (2)

The function ρ indicates the crisp realiza-
tion that represents the imprecise property
for each restriction level. As an example,
the RL-representation for an atomic imprecise
property defined by a fuzzy set A is the pair
(ΛA, ρA), where ΛA is obtained using equation
(1), and ρA(α) = Aα ∀α ∈ ΛA. We introduce
the following definition:

Definition 2.4 Given an imprecise property
P represented by (ΛP , ρP ), we define the set
of crisp representatives of P , ΩP , as

ΩP = {ρP (α) | α ∈ ΛP } (3)

For an atomic property A, the set of crisp rep-
resentatives ΩA is the set of significant α-cuts
of A, as we have seen. However, notice that in
definition 2.3 there is no restriction about the
possible crisp representatives for non-atomic
properties. In particular, as a consequence of
operations, they don’t need to be nested. We
shall see examples coming from operations in
section 3.

In order to define properties by operations, it
is convenient to extend the function ρ to any
RL α ∈ (0, 1] as follows:

Definition 2.5 Let (Λ, ρ) be a RL-
representation with Λ = {α1, . . . , αm} veri-
fying 1 = α1 > α2 > · · · > αm > αm+1 = 0.
Let α ∈ (0, 1] and αi, αi+1 ∈ Λ such that
αi ≥ α > αi+1. Then

ρ(α) = ρ(αi) (4)

This idea is natural if we think of α-cuts
since in the conditions of definition 2.5, for
any fuzzy set A, Aα = Aαi . Using this
definition, we define the equivalence of RL-
representations as follows:

Definition 2.6 Let (Λ, ρ) and (Λ′, ρ′) be two
RL-representations on X. We say that both
representations (and the corresponding prop-
erties) are equivalent, noted (Λ, ρ) ≡ (Λ′, ρ′),
iff ∀α ∈ (0, 1]

ρ(α) = ρ′(α).

In particular, the following proposition holds:

Proposition 2.1 Let (Λ, ρ) be a RL-
representation and let Λ ⊆ Λ′. Then
(Λ, ρ) ≡ (Λ′, ρ).

Proof: Trivial. ¤

2.3 Fuzzy summary of a
RL-representation

Given a RL-representation (ΛA, ρA) for an
atomic property A, the values of ΛA can be
interpreted as values of possibility of a possi-
bility measure defined ∀ρA(αi) ∈ ΩA as

Pos(ρA(αi)) = αi. (5)

Following this interpretation we define a basic
probability assignment in the usual way:

Definition 2.7 Let (Λ, ρ) be a RL-
representation with crisp representatives
Ω. We define the associated probability
distribution m : Ω → [0, 1] as

m(Y ) =
∑

αi | Y =ρ(αi)

αi − αi+1. (6)

It is easy to show that∑
Y ∈Ω

m(Y ) =
∑
αi∈Λ

m(ρ(αi)) = 1 (7)

Using this basic probability assignment it is
possible to obtain an object-centered sum-
mary of the information available about the
imprecise property as a fuzzy set. We intro-
duce the following definition:
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Definition 2.8 Let (Λ, ρ) be a RL-
representation. We define the associated
fuzzy summary µ : X → [0, 1] as

µ(x) =
∑

Y ∈Ω | x∈Y

m(Y ) (8)

The following proposition holds for atomic
properties, but not in general:

Proposition 2.2 Let (ΛA, ρA) be the RL-
representation for an atomic property repre-
sented by a fuzzy set A. Then ∀x ∈ X

µA(x) = A(x). (9)

Proof: Trivial. ¤
As a consequence, fuzzy sets and RL-
representations are equivalent for atomic
properties, but not for derived properties.
In the latter case, fuzzy sets are a way to
summarize the information given by the RL-
representation in an easy-to-understand way.
However, both representations are not equiva-
lent in general as a result of the way we define
operations. We shall see our definitions of op-
erations and examples of the non-equivalence
between RL-representations and fuzzy sets in
the next section.

3 Logical operations

Atomic properties can be combined to form
other properties via conjunction, disjunction,
and negation in the usual way. Our approach
to operations relies on the following ideas:

1. There is a single membership scale, i.e.,
let F and G be fuzzy subsets of X, then
F (x) = G(x′) means that x is F just like
x′ is G. Hence, it makes sense to consider
the representation of a knowledge base in
a certain restriction level as a knowledge
base consisting of the representation in
that RL of all the properties and concepts
that form the KB.

2. Crisp operations are extended to im-
precise properties by operating in
each restriction level. In general,

let f : P(X)n → P(X) be a crisp
operation. Then, f is extended to
RL-representations as follows: let
(P1, . . . , Pn) be imprecise properties
defined on X with Pi represented
by a RL-representation (ΛPi , ρPi).
Then, f(P1, . . . , Pn) is represented by
(Λf(P1,...,Pn), ρf(P1,...,Pn)) where

Λf(P1,...,Pn) =
⋃

1≤i≤n

ΛPi (10)

and, ∀α ∈ Λf(P1,...,Pn),

ρf(P1,...,Pn)(α) = f(ρP1(α), . . . , ρPn(α))
(11)

The representation in a certain RL of the
extension of a certain crisp operation is
the result of that operation on the rep-
resentatives in the same RL of the argu-
ments involved.

Using these ideas, the logical operations be-
tween imprecise properties represented by
RL-representations can be defined by extend-
ing the corresponding set operators in their
extensive representations. Conjunction and
disjunction are extended as follows:

Definition 3.1 Let P , Q be imprecise prop-
erties represented by (ΛP , ρP ), (ΛQ, ρQ).
Then, P ∧ Q and P ∨ Q are imprecise
properties represented by (ΛP∧Q, ρP∧Q) and
(ΛP∨Q, ρP∨Q), respectively, where

ΛP∧Q = ΛP∨Q = ΛP ∪ ΛQ (12)

with, ∀α ∈ (0, 1],

ρP∧Q(α) = ρP (α) ∩ ρQ(α) (13)

and
ρP∨Q(α) = ρP (α) ∪ ρQ(α) (14)

The idea of operation by crisp representa-
tives of the same RL is not new. In the
case of fuzzy sets, fuzzy intersection and
union can be performed by α-cuts. As it is
well known, the results (also in the case of
RL-representation of atomic properties) are
equivalent to combine degrees via minimum
and maximum, respectively. This means in
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particular that imprecise properties derived
from atomic properties by using ∧ and ∨ only
are compatible with fuzzy sets when these
operations are performed via minimum and
maximum, in the sense that the correspond-
ing RL-representation yields the usual nested
α-cut representation of fuzzy sets.

However, this is not true in general when
negation is employed. We define the negation
operator as follows:

Definition 3.2 Let P be an imprecise prop-
erty represented by (ΛP , ρP ). Then, ¬P is an
imprecise property represented by (Λ¬P , ρ¬P ),
where

Λ¬P = ΛP (15)

and, ∀α ∈ (0, 1],

ρ¬P (α) = ρP (α) (16)

where Y is the usual set complement of a crisp
set Y .

As an example of negation, consider an uni-
verse X = {x1, . . . , x5} and the atomic prop-
erty A on X defined by the fuzzy set

A = 1/x1 + 0.8/x2 + 0.5/x3 + 0.4/x5

Table 1 shows the RL-representations for A
and ¬A on the RL-set

ΛA = Λ¬A = {1, 0.8, 0.5, 0.4}.

α ρA(α) ρ¬A(α)
1 {x1} {x2, x3, x4, x5}

0.8 {x1, x2} {x3, x4, x5}
0.5 {x1, x2, x3} {x4, x5}
0.4 {x1, x2, x3, x5} {x4}

Table 1: Negation of A.

Table 2 shows another example of negation for
the atomic property B = 0.9/x1 + 0.6/x3 +
0.5/x4. In this case,

ΛB = Λ¬B = {1, 0.9, 0.6, 0.5}.

As we can see, the representation of the nega-
tion of an atomic property (e.g. ¬A) is not
the set of α-cuts of the complement of the

α ρB(α) ρ¬B(α)
1 ∅ X

0.9 {x1} {x2, x3, x4, x5}
0.6 {x1, x3} {x2, x4, x5}
0.5 {x1, x3, x4} {x2, x5}

Table 2: Negation of B.

corresponding fuzzy set (e.g. the fuzzy set
A(x) = 1 − A(x)). This is also true for B in
table 2. However, the following proposition
holds:

Proposition 3.1 Let A be a fuzzy set repre-
senting an atomic property. Then

µ¬A(x) = A(x) = 1−A(x) (17)

Proof: Let x ∈ X with degree A(x). Then,∑
Y ∈ΩA | x∈Y

mA(Y ) = A(x)

Since
∑

Z∈Ω¬A
m¬A(Z) = 1 and x ∈ Y ∈ ΩA

implies x 6∈ Y ∈ ΩA, and mA(Y ) = m¬A(Y ),
we have ∑

Y ∈Ω¬A | x∈Y

m¬A(Y ) = 1−A(x)

¤
Proposition 3.1 tell us that the summary of
the RL-representation of ¬A is the fuzzy com-
plement of the fuzzy set A by means of the
standard negation n(x) = 1 − x. This means
that, from the point of view of operations
on degrees, both are equivalent. However,
the structure of the RL-representation of ¬A
and the RL-representation obtained from the
fuzzy set A are not the same.

As an example of combination of operations,
tables 3 and 4 show the representation of sev-
eral properties derived from A and B. In par-
ticular, in table 3 we have an example of RL-
representation, that of the property A ∧ ¬B,
in which the different crisp realizations corre-
sponding to RL’s are not nested.

The following is one important property of
RL-representations with the operations we
have defined in this section:
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α ρA(α) ρ¬A(α) ρB(α) ρ¬B(α) ρA∧¬B(α) ρB∧¬A(α)
1 {x1} {x2, x3, x4, x5} ∅ X {x1} ∅

0.9 {x1} {x2, x3, x4, x5} {x1} {x2, x3, x4, x5} ∅ ∅
0.8 {x1, x2} {x3, x4, x5} {x1} {x2, x3, x4, x5} {x2} ∅
0.6 {x1, x2, x3} {x4, x5} {x1, x3} {x2, x4, x5} {x2} ∅
0.5 {x1, x2, x3} {x4, x5} {x1, x3, x4} {x2, x5} {x2} {x4}
0.4 {x1, x2, x3, x5} {x4} {x1, x3, x4} {x2, x5} {x2, x5} {x4}

Table 3: Several properties derived from the atomic properties A and B (I).

α ρA∧B(α) ρA∨B(α) ρ¬(A∧B)(α) ρ¬(A∨B)(α) ρ¬A∨¬B(α)
1 ∅ {x1} X {x2, x3, x4, x5} X

0.9 {x1} {x1} {x2, x3, x4, x5} {x2, x3, x4, x5} {x2, x3, x4, x5}
0.8 {x1} {x1, x2} {x2, x3, x4, x5} {x3, x4, x5} {x2, x3, x4, x5}
0.6 {x1, x3} {x1, x2, x3} {x2, x4, x5} {x4, x5} {x2, x4, x5}
0.5 {x1, x3} {x1, x2, x3, x4} {x2, x4, x5} {x5} {x2, x4, x5}
0.4 {x1, x3} X {x2, x4, x5} ∅ {x2, x4, x5}

Table 4: Several properties derived from the atomic properties A and B (II).

Proposition 3.2 Operations on RL-
representations verify all the ordinary
properties of logical equivalence.

Proof: Immediate since the logical oper-
ations between RL-representations are per-
formed via the corresponding set operations
on crisp sets in each restriction level, that ver-
ify the corresponding set-equality properties,
and the equivalence of RL-representations is
defined in terms of equality of the representa-
tives in all levels. ¤
By proposition 3.2, properties like ¬¬A ≡ A,
De Morgan’s laws (¬(A∧B) ≡ (¬A∨¬B), one
of them, is illustrated in table 4) and the law
of excluded middle in any of its versions hold.
The latter can be expressed as A ∧ ¬A ≡ ⊥
or A ∨ ¬A ≡ >, where > and ⊥ are atomic
properties representing respectively a tautol-
ogy (RL-representation obtained from X) and
a contradiction (whose representation is ob-
tained from ∅).

4 Discussion

The representation of imperfect properties by
means of a collection of crisp sets has been em-
ployed in many ways, in particular in the rep-
resentation theorems of fuzzy sets, rough sets
[5], and evidence theory [8], among others.

The idea of representing imprecise properties
starting from atomic properties has been em-
ployed before with the same objective of keep-
ing the equivalence properties of the crisp case
[6, 7], and is something usual in the area of
fuzzy description logics. In this paper we ob-
tain the RL-representation of an atomic prop-
erty from a fuzzy set; however, there are other
possibilities that will be considered in forth-
coming papers.

With respect to fuzzy sets, RL-
representations need some more storage
space and time for operations (though a fi-
nite, suitable for the problem number of RL’s
will maintain a linear complexity), and the
definitions of conjunction, disjunction, and
negation are unique; however, t-norms and
t-conorms can be employed as aggregation
operators in order to obtain the degrees of
atomic properties. The interpretability of
RL-representations is easier by using the
idea of fuzzy summary; we shall introduce
linguistic summaries in forthcoming papers.

The new representation is very useful for
those applications where we need to keep the
properties of logical equivalence of the crisp
case. Some approaches based on α-cuts to
problems like cardinality of fuzzy sets [2],
evaluation of quantified sentences [4], fuzzy
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description logics [1], and representation and
arithmetic of fuzzy integers [3] are based on
the representation of atomic properties by
means of α-cuts and operations by means of
maximum and minimum. These approaches
can be extended and improved by using RL-
representations, in particular with respect to
the fulfilment of properties involving nega-
tion. We are currently working in this line. In
particular, by means of the extension of mea-
sures, we have developed a representation and
arithmetic of imprecise numbers (from natu-
rals to complex numbers) that verify all the
arithmetic properties. The arithmetic of these
RL-numbers has the remarkable feature that
they don’t increase the imprecision of the re-
sults of arithmetic operations, contrary to the
representation of imprecise numbers by means
of collections of intervals. This work is de-
scribed in a currently submitted paper.
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