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Abstract

Nonparametric statistical tests are
robust to disturbances of the as-
sumptions on the underlying distri-
butions. However, in the presence
of vague data, modelled by fuzzy
sets, the problem of robustness is
much more complicated. Here not
only distribution-free methods but
tests which are also not sensitive to
the particular choice of the member-
ship functions applied for modelling
vague concepts would be desirable.
A construction of such bi-robust test
is suggested in the paper.

Keywords: fuzzy sets, IF-sets,
nonparametric test, sign test, vague
data.

1 Introduction

Very often statistical tests are categorized
within the framework of parametric or non-
parametric ones. Parametric test makes spe-
cific assumptions the underlying population
distribution (e.g., normality, exponentiality).
If these assumptions are violated it may hap-
pen that a parametric test would loose its
good properties. Thus, if the assumptions are
not necessarily satisfied it would be more pru-
dent to apply nonparametric tests (also re-
ferred to as distribution-free tests) which
make no such stringent assumptions on the
underlying distribution. This way nonpara-
metric tests are generally perceived as more

robust to possible violations of assumptions
than parametric ones.

However, if we deal with vague data which
are often modelled by fuzzy sets, another view
on the robustness of statistical procedures ap-
pears. Since the shape of membership func-
tions applied for modelling vague data is gen-
erally strongly subjective one may ask about
the possible influence of that shape on further
decisions.

Nonparametric test for fuzzy data were con-
sidered e.g. by Grzegorzewski [6], [8], [10] and
[3]. Although tests considered in these paper
are distribution-free, their output may heavily
depend on the membership functions which
characterize fuzzy data. Thus in the present
paper we suggest a modification of the well-
known sign test for fuzzy data which is both
distribution-free and robust to the choice of
the particular form of membership function
describing data. In the description of this
test we make use of If-sets (also known as
Atanassov tests or intuitionistic fuzzy sets)
which facilitate the interpretation and make
it more natural.

The paper is organized as follows: In Sec.
2 we introduce basic notation used for mod-
elling vague data. In Sec. 3, we recall the
classical sign test and in Sec. 4 we mention
some information on IF-sets. Then in Sec.
5 we suggest a bi-robust modification of the
sign test. Finally, in Sec. 6 we show that our
modified sign test could be also applied for
verifying imprecise hypotheses.
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2 Vague data

In many areas of human cognition people
state and verify hypotheses. Hypotheses test-
ing is also an important aspect of decision
making. When the hypotheses deal with ob-
jects which are not deterministic but follow
any random distribution, we have so-called
statistical hypotheses testing. In the classi-
cal theory of statistical hypotheses testing all
parameters of the mathematical model, i.e.
data, hypotheses and requirements, should be
precisely defined. However, in real life we
often meet vague data, like “about twenty”,
“more or less between fifty and sixty” and so
on. It may also happen that our data are crisp
but a hypothesis is imprecise. For example we
may consider a hypothesis that the mean is
“about ten” or that the variance is “no greater
than five”. In such cases one may utilize fuzzy
numbers for modelling both vague data and
imprecise hypotheses.

The notion of a fuzzy number was introduced
by Dubois and Prade [4]. We say that a
fuzzy subset A of the real line R, with the
membership function µA : R → [0, 1], is
a fuzzy number if and only if A is normal
(i.e. there exists an element x0 such that
µA(x0) = 1), A is fuzzy convex (i.e. µA(λx1 +
(1 − λ)x2) ≥ µA(x1) ∧ µA(x2), ∀x1, x2 ∈ R,
∀λ ∈ [0, 1]), µA is upper semicontinuous and
suppA is bounded, where suppA = cl({x ∈
R : µA(x) > 0}), and cl is the closure opera-
tor.

A useful notion for dealing with a fuzzy num-
ber is a set of its α−cuts. The α−cut of a
fuzzy number A is a nonfuzzy set defined as

Aα = {x ∈ R : µA(x) ≥ α}. (1)

A family {Aα : α ∈ (0, 1]} is a set representa-
tion of the fuzzy number A. According to the
definition of a fuzzy number it is easily seen
that every α-cut of a fuzzy number is a closed
interval. Hence we have Aα = [AL

α, AU
α ],

where AL
α = inf{x ∈ R : µA(x) ≥ α} and

AU
α = sup{x ∈ R : µA(x) ≥ α}. A space of all

fuzzy numbers will be denoted by FN(R).

To model fuzzy outcomes of a random ex-
periment we need the notion of fuzzy ran-

dom variable. The first who considered fuzzy
random variables was Kwakernaak [13], [14].
Other definitions of fuzzy random variables
are due to Kruse [11] or to Puri and Ralescu
[15]. Here let us consider a definition simi-
lar to those of Kwakernaak and Kruse. Sup-
pose that a random experiment is described
as usual by a probability space (Ω, A, P ),
where Ω is a set of all possible outcomes
of the experiment, A is a σ-algebra of sub-
sets of Ω (the set of all possible events) and
P is a probability measure. Then mapping
X : Ω → FN(R) is called a fuzzy random
variable if it satisfies the following properties:
(a) {X(α, ω) : α ∈ [0, 1]} is a set represen-
tation of X(ω) for all ω ∈ Ω, (b) for each
α ∈ [0, 1] both XL

α = XL
α (ω) = inf Xα(ω) and

XU
α = XU

α (ω) = sup Xα(ω), are usual real-
valued random variables on (Ω, A, P ).

Thus a fuzzy random variable X is considered
as a perception of an unknown usual random
variable V : Ω → R, called an original of X.
Similarly n-dimensional fuzzy random sample
X1, . . . , Xn may be treated as a fuzzy percep-
tion of the usual random sample V1, . . . , Vn

(where V1, . . . , Vn are independent and identi-
cally distributed crisp random variables). For
more information we refer the reader e.g. to
[12].

Now having a mathematical model for vague
outcomes of a random experiment we may
pass to hypotheses testing. Grzegorzewski [7]
proposed a general method for constructing
statistical tests for vague data modelled by
fuzzy sets. However, another problem con-
nected with fuzzy data comes from the fact
that most of the statistical tests is based on
fairly specific assumptions regarding the na-
ture of the underlying population distribu-
tion. Stringent assumptions on distributions
lead sometimes to serious difficulties even in
the case of crisp data. But this difficulty is
much stronger when the data are fuzzy be-
cause the justification on the legitimacy of the
postulates on the underlying distribution in
the presence of imprecise data is a very seri-
ous problem. In fact we still do not have sat-
isfactory goodness-of-fit techniques for fuzzy
data. As in statistics for crisp data a remedy
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for this problem are nonparametric methods
which are by the definition distribution-free.
Some nonparametric approaches for testing
hypotheses with fuzzy data were suggested,
like [6], [8], [10] or [3].

Unfortunately those nonparametric tests for
imprecise data, although they smooth away
difficulties related to the unknown underly-
ing distribution, they strongly depend on the
shape of the membership function utilized for
modelling the data. This seems to be a se-
rious drawback, especially that using fuzzy
modelling we make every endeavor to be flex-
ible yet we are still very restricted by the
very choice of the precise form of the member-
ship functions. One can easily appreciate the
weight of the problem when he realizes that
different persons may assign distinct member-
ship functions to the same objects since mod-
elling vague objects cannot be completely free
from subjectivity.

One way out is to utilize defuzzification meth-
ods, like in [8]. However, as always when the
defuzzification is performed, this approach
might be also criticized both for the unneces-
sary loss of information and for too arbitrary
choice of the defuzzification method. More-
over, this way we actually do not solve the
problem but we replace the matter of the
procedure’s susceptibility to the choice of the
membership function with robustness against
the defuzzification method.

Presumably it would be difficult to construct
such statistical procedures for vague data that
disregard completely the actual shape of the
membership functions applied for modelling
these data. However, we may try to eliminate
the impact of the particular form of member-
ship functions as much as possible or to the
acceptable degree. Such desired tests that are
robust both to assumptions on the underlying
distribution and for the shape of the mem-
bership functions will be called below as bi-
robust tests.

It seems that a good starting point for our
goal is an appropriate choice of a nonpara-
metric test which would be latter generalized
for fuzzy data. But what do we mean by a

good test? It should be a test which is based
on as much as possible general information on
the data. In nonparametric statistics we can
find such methods that disregard actual val-
ues of the observations and are based only on
some comparisons between the data and fixed
values or just between observations. The well-
known sign test seems to be a good candidate
for such bi-robust test for the location prob-
lem. Thus in the next section we recall briefly
the classical sign test, while in Sec. 5 we sug-
gest its generalization for fuzzy data.

3 The sign test

The classical tests for the location parameter -
generally for the mean - are derived under the
assumption that the single population is nor-
mal. Otherwise, having large sample, one may
perform asymptotic tests. However, in many
situations, these assumption are not satisfied.
Then nonparametric tests are recommended
since they often do not require almost any as-
sumptions about specific population distribu-
tion. The well-known sign test seems to be a
good nonparametric alternative to parametric
tests for single population location problem.
In the sign test the hypotheses concerns the
median, not the mean, as a location parame-
ter. Both the mean and the median are good
measures of central tendency and they coin-
cide for symmetric distributions. But in any
population the median always exists, which
is not true for the mean. Moreover, the me-
dian is more robust to outlier as an estimate
of location than the mean.

Suppose a random sample of n independent
observations V1, . . . , Vn is drawn from the
population with unknown median M . The
only assumption about the distribution is that
the population distribution is continuous in
the vicinity of M . We verify the null hypothe-
sis concerning the value of the population me-
dian

H0 : M = M0 (2)

with a corresponding one-sided or two-sided
alternative on M .

The idea of the sign test is very simple: if
the data are consistent with the hypothesized
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median M0, on the average half of the sam-
ple observations should lie above M0 and a
half below. Thus if H0 holds and we gather
only the signs of all differences Vi − M0 for
i = 1, . . . , n, then the number of plus signs
and the number of minus signs will be more or
less identical. And conversely, if there is sig-
nificant disproportion between the number of
plus signs and the number of minus signs then
we may conclude that hypothesis H0 should
be rejected. This is the reason why we call
this test the sign test. Of course, it is not
necessary to consider both the number of plus
signs and the number of minus signs because
they are strongly related. So the test statistic
is defined as follows

T =
n∑

i=1

I(Vi > M0), (3)

where I(ρ) denotes the indicator function such
that

I(ρ) =
{

1 if ρ is true,
0 if ρ is false.

As it is seen, the test statistic is just the num-
ber of plus signs among n differences. The
sampling distribution of T is binomial with
parameters n and θ which is equal to 0.5 if
the null hypothesis H0 holds. The appropri-
ate rejection region depends on the alterna-
tive hypothesis. For a one-sided upper-tailed
alternative H1 : M > M0 we have a following
decision rule:

if T ≥ kδ then reject H0,
if T < kδ then accept H0,

(4)

where kδ is chosen to be the smallest integer
which satisfies

P (T ≥ kδ | H0) =
n∑

i=kδ

(
n

i

)
0.5n ≤ δ (5)

and δ is an accepted significance level. Sim-
ilarly, for a one-sided lower-tailed alternative
H1 : M < M0 we have

if T ≤ k′
δ then reject H0,

if T > kδ then accept H0,
(6)

where k′
δ = n−kδ. And finally, for a two-sided

alternative H1 : M 6= M0 we have

if T ≥ kδ/2 or T ≤ k′
δ/2 then reject H0,

if k′
δ/2 < T < kδ/2 then accept H0.

Alternatively, instead of comparing test sta-
tistic with appropriate critical values one may
compute the so-called p-value corresponding
to obtained value of test statistic T (i.e. the
smallest significant level at which the null hy-
pothesis could be rejected). Then, using p-
value the decision rule is as follows:

if p− value ≤ δ then reject H0,
if p− value > δ then accept H0.

(7)

For more information on the sign test and
other nonparametric test we refer the reader
to [5] or [9].

4 IF-sets

As it was mentioned above we use fuzzy num-
bers for modelling vague data. However, we
will also utilize If-sets in this paper. Here we
briefly recall some basic notions related to IF-
sets. Let U denote a universe of discourse.
Then a fuzzy set C in U is defined as a set of
ordered pairs

C = {〈x, µC(x)〉 : x ∈ U}, (8)

where µC : U → [0, 1] is the membership func-
tion of C and µC(x) is the grade of belong-
ingness of x into C (see [16]). Thus automat-
ically the grade of nonbelongingness of x into
C is equal to 1 − µC(x). However, in real
life the linguistic negation not always iden-
tifies with logical negation. This situation
is very common in natural language process-
ing, computing with words, etc. Therefore
Atanassov [1], [2] suggested a generalization
of classical fuzzy set, called an intuitionistic
fuzzy set. The name suggested by Atanassov
is slightly misleading, because his sets have
nothing in common with intuitionism known
from logic. It seems that other name, e.g.
incomplete fuzzy sets (which had the same
abbreviation), would be even more adequate
for the Atanassov sets. Thus finally, in or-
der to avoid terminology problems, we call the
Atanassov sets as IF-sets.
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An IF-set C in U is given by a set of ordered
triples

C = {〈x, µC(x), νC(x)〉 : x ∈ U}, (9)

where µC , νC : U → [0, 1] are functions such
that

0 ≤ µC(x) + νC(x) ≤ 1 ∀x ∈ U. (10)

For each x the numbers µC(x) and νC(x) rep-
resent the degree of membership and degree
of nonmembership of the element x ∈ U to
C ⊂ U , respectively. Of course, IF-set of a
form {〈x, µC(x), 1− µC(x)〉 : x ∈ X} is equiv-
alent to (8), i.e. each fuzzy set is a particular
case of the IF-set.

For each element x ∈ U we can compute, so
called, the IF-index of x in C defined as fol-
lows

πC(x) = 1− µC(x)− νC(x), (11)

which quantifies the amount of indeterminacy
associated with x in C.

5 Modified sign test for fuzzy data

Suppose we have a fuzzy random sample
X1, . . . , Xn. When we try to apply the classi-
cal sign test directly to fuzzy data we meet im-
mediately a serious difficulty. This is because
the test statistic T depends on the number of
observations bigger than a value M0 consid-
ered in the null hypothesis while fuzzy num-
bers are not linearly ordered. Since a crisp
number is a special case of a fuzzy number
it may happen that one would not be able to
judge whether given fuzzy observation Xi is
greater or not than the hypothesized median
M0.

However, although there is no such ordering
system that could univocally determine which
one of two fuzzy numbers is bigger, everybody
would agree to admit Xi greater than M0 if
inf(suppXi) > M0. Similarly, we will have
no doubts to say that M0 is greater than Xi

if M0 > sup(suppXi). All other cases, i.e.
when M0 ∈suppXi are not so clear and differ-
ent methods for ordering fuzzy number may

lead to opposite conclusions. In such uncer-
tain situations one may also try to specify a
degree to which the majority relation is satis-
fied.

Let G denote an IF-set of observations greater
than M0. Therefore, we have

G = {〈Xi, µG(Xi), νG(Xi)〉 : i = 1, . . . , n},
(12)

where µG(Xi) shows the degree to which ob-
servation Xi is greater than M0 and νG(Xi)
represents the degree to which the above men-
tioned relationship is not satisfied. Thus IF-
index πG(Xi) = 1 − µG(Xi) − νG(Xi) illus-
trates the degree of hesitancy or irresolution
of the observer regarding the majority rela-
tion between Xi and M0.

Thus for all observations in a sample such
that infsuppXi > M0 we get µG(Xi) = 1
and νG(Xi) = 0. If M0 > supsuppXi then
µG(Xi) = 0 and νG(Xi) = 1. For all situ-
ations when M0 ∈suppXi both µG(Xi) and
νG(Xi) may assume various values which re-
flect how much the observer is convinced
that Xi greater than M0 and how much he
is against this statement, respectively. In
particular, if the observer is neither for nor
against and he wants to avoid any assessment
of the degree to which the majority relation is
satisfied, he may attribute to the observation
following values: µG(Xi) = 0 and νG(Xi) = 0.

Now we may define a test statistic. As in the
classical case we will try to count how many
observations exceed the hypothesized median
M0. This task may be considered as an at-
tempt to compute the cardinality of the set
G. However, since G is an IF-set its cardi-
nality would not be a natural number but an
interval given as follows

cardG = [
n∑

i=1

µG(Xi),
n∑

i=1

(1− νG(Xi))]

= [
n∑

i=1

µG(Xi), n−
n∑

i=1

νG(Xi)].

(13)

Hence for fuzzy data the output of the test
statistic is no longer a single natural number
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but an interval

T̃ (X1, . . . , Xn) = [TL, TU ], (14)

where

TL =
n∑

i=1

µG(Xi), (15)

TU = n−
n∑

i=1

νG(Xi). (16)

To make a decision we will apply the rule
based on the concept of p-value. However,
since our modified sign test statistic is an
interval, hence p-value corresponding to the
output of the modified test would be no longer
a single real number from the unit interval .
Therefore, as a counterpart of the traditional
p-value we will consider an interval p̃ (also
called p-value) given by

p̃ = [pL, pU ], (17)

such that

pL =
n∑

i=bT Lc

(
n

i

)
0.5n, (18)

pU =
n∑

i=dT U e

(
n

i

)
0.5n, (19)

where bxc is the biggest integer smaller or
equal to x, while dxe stands for the smallest
integer greater than or equal to x.

Using our interval p-value the decision rule is
a little different than as in the classical case.
Hence for any assumed significance level δ we
have following decision rules:

if pU ≤ δ then reject H0,
if pL > δ then accept H0.

(20)

If pL ≤ δ < pU then our test is not decisive.

The last case when the test appears to be
non-decisive simply means that given sample
brings evidence neither for rejection nor for
the acceptance of the hypothesis under study.
In such a case one may suggest, for example,
to consider a bigger sample for making the fi-
nal decision. It is also worth noting that such

situation when a test is not decisive is not
unique even in traditional statistics for pre-
cise data - one can recall the classical Durbin-
Watson test as an example.

One may also note that if all observations are
crisp (not fuzzy) then the test suggested in
this section reduces to the classical sign test.
It means that our modified sign test for fuzzy
data is a natural generalization of the original
sign test.

6 Testing imprecise hypotheses

It is worth noting that the main idea of the
test construction given above could be easily
applied also for testing imprecise hypotheses.
Suppose now that we verify the null hypothe-
sis concerning the value of the population me-
dian

H0 : M = M̃0, (21)

where M̃0 ∈ FN(R). This situation corre-
sponds to imprecisely formulated hypotheses
of the type “the population median is about
M̃0” or “the population median is more or less
M̃0”.

So now we have to compare fuzzy observations
X1, . . . , Xn with fuzzy median M̃0. Keep-
ing in mind all remarks given in the previ-
ous section we are aware of problems with
determination whether given fuzzy observa-
tion is or is not greater than the hypoth-
esized fuzzy median. However, everybody
would agree to admit Xi greater than M̃0

if infsuppXi > sup(suppM̃0). Similarly, we
will have no doubt to say that M̃0 is greater
than Xi if inf(suppM̃0) > sup(suppXi). In all
other cases, i.e. when (suppM̃0)∩ (suppXi) 6=
∅, different methods for ordering fuzzy num-
ber may lead to opposite conclusions.

Thus, as before, one may try to specify a de-
gree to which the majority relation is satisfied.
Now IF-set G given by (12) describes observa-
tions greater than M̃0, with µG(Xi) showing
the degree to which observation Xi is greater
than M̃0 and νG(Xi) representing the degree
to which the above mentioned relationship is
not satisfied. Of course, for all observations in
a sample such that infsuppXi > sup(suppM̃0)
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we get µG(Xi) = 1 and νG(Xi) = 0 while situ-
ations where inf(suppM̃0) > supsuppXi lead
to µG(Xi) = 0 and νG(Xi) = 1. For all other
situations when (suppM̃0) ∩ (suppXi) 6= ∅
both µG(Xi) and νG(Xi) may assume vari-
ous values which reflect how much the ob-
server is convinced that Xi greater than M̃0

and how much he is against this statement,
respectively.

The test statistic and decision rules for testing
imprecise hypotheses are obtained in the same
way as in Sec. 5.

7 Conclusions

In the present paper we have proposed a mod-
ification of the classical sign test to cope with
vague data modelled by fuzzy sets. The ap-
pealing feature of that modification is that
we obtain a bi-robust test, i.e. a test which
is both distribution-free and which does not
depend so heavily on the shape of the mem-
bership functions used for modelling impre-
cise data. The suggested modified sign test
could be also applied for testing imprecise hy-
potheses.

Finally, we want to stress that although this
paper is dedicated to sign test modification
only, using the suggested methodology one
can also generalize other nonparametric tests
into fuzzy environment.
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