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Abstract

Conventional addition builds upon
the ordinary successor operator. It
can therefore be expected that a
formal algebraic approach to fuzzy
arithmetic should likewise be based
on a notion of fuzzy successors, and
indeed allowing for a family of fuzzy
successors. In this paper we aim
at formalizing the first steps to-
wards an understanding of an alge-
braically formal description of fuzzy
addition. Keywords: Fuzzy arith-
metic, fuzzy successor.

1 Introduction

The paper continues investigations initiated
in [5] toweards a categorical approach to fuzzi-
fication processes. Traditionally fuzzification
processes on a non-empty set X are per-
formed by applying Zadeh Extension Princi-
ple (ZEP) [7, 11]. In this paper we suggest to
consider a formal approach to fuzzy succes-
sors. This provides groundworks for further
developments that are especially interesting in
arithmetic of fuzzy natural numbers. Linguis-
tically, ZEP is usually interpreted such that
any operation on X can be extended to an
operation on LX , where L is typically a com-
pletely distributive lattice and for L = {0, 1}
we write L = 2.
Example 1. Consider there are some per-
sons, each buying a couple of wine bottles.
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As a result, they have all together quite many
wine bottles. Clearly, ‘some persons’, ‘a cou-
ple of wine bottles’ and ‘quite many wine bot-
tles’ can be modelled as L-sets on the set of
natural numbers N. The hedge ‘quite many’
may be considered as some kind of aggrega-
tion of ‘some’ and ‘a couple of’.

Example 1 suggests that the arithmetic of
natural numbers is not really needed, while
the extension principle says that the arith-
metic on N is defined first and then these op-
erations are extended. Now, we recall ZEP
mathematically: Let X be a non-empty set.
Then, for any A1, . . . , An ∈ LX we have ZEP:

fL(A1, . . . , An)(z) =
∨

f(x1,...,xn)=z

(
n∧
i=1

Ai(xi)

)

where fL is an n-ary operation on LX as an
extension of f : Xn −→ X, and x1, . . . , xn ∈
X. The formula ZEP is the traditional way to
define, for example, arithmetic of fuzzy nat-
ural numbers as ‘arithmetic with fuzzy’. On
the other hand, the study in [3] suggests that
approaching arithmetic of fuzzy natural num-
bers as ‘arithmetic with fuzzy’ is counter in-
tuitive in monadic setting. In fact, the forma-
tion of N defines also the arithmetical opera-
tions. Indeed, N is formed by means of the
successor (succ) operation, and other arith-
metical operations on N are based on succ,
that is, they are based on enumeration. In
this paper we critically deliberate about ex-
tentions in the sense of Example 1 and exten-
sions by means of ZEP.
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2 Monads and monad compositions

Monads date back to 1958 and work by Gode-
ment, and also to 1961 with work by Hu-
ber who showed that adjoint pairs give rise
to monads. Lawvere [8] introduced univer-
sal algebra into category theory and this can
be seen as the the introduction of the term
monad. These developments include all re-
quired categorical techniques for substitution
theories. Let C be a category. A monad (or
triple, or algebraic theory) over C is writ-
ten as F = (F, η, µ), where F : C → C
is a (covariant) functor, and η : id → F
and µ : F ◦ F → F are natural transfor-
mations for which µ ◦ Fµ = µ ◦ µF and
µ ◦ Fη = µ ◦ ηF = idF hold. In the sequel,
let L be a completely distributive lattice. The
covariant power-set functor Lid is obtained by
LidX = LX , and for a morphism X

f→ Y in
Set we have ([7, 11])

Lidf(A)(y) =
∨
x∈X

A(x) ∧ f−1({y})(x)

=
∨

f(x)=y

A(x). (1)

Further, define ηX : X → LidX by

ηX(x)(x′) =

{
1 if x = x′

0 otherwise
(2)

and µX : LidLidX → LidX by

µX(A)(x) =
∨

A∈LidX
A(x) ∧ A(A). (3)

We refer [1, 10] for more detailed discussion on
power-set functors. Especially, Lid is categor-
ically a correct choice to powerset operators
in the sense of Rodabaugh ([10]). Moreover,
it is clear that ZEP and (1) coincide when
n = 1. It is well known that the functor Lid
can be extended to monad with η and µ de-
fined in (2) and (3), respectively. Indeed, the
following proposition can be presented:

Proposition 1 ([9]). Lid = (Lid, η, µ) is a
monad.

Note that 2id is the usual covariant power-set
monad P = (P, η, µ), where PX is the set of

subsets of X, ηX(x) = {x} and µX(B) =
⋃B,

where B ∈ PPX. The problem of extend-
ing a functor to a monad is not a trivial one,
and some strange situations may well arise
as shown below. The id2 functor can be ex-
tended to a monad with ηX(x) = (x, x) and
µX((x1, x2), (x3, x4)) = (x1, x4). Similarly,
idn can be extended to a monad. In addi-
tion, the proper power-set functor P0, where
P0X = PX \ {∅}, as well as id2 ◦ P0 can,
respectively, be extended to a monad in a
unique way. However, P0◦id2 cannot be made
to a monad [4].

Remark 1. Let ΦΦΦ = (Φ, ηΦ, µΦ) and ΨΨΨ =
(Ψ, ηΨ, µΨ) be monads over Set. The compo-
sition Φ ◦ Ψ cannot always be extended to a
monad as we see in the case of P0 ◦ id2.

Especially, L0 ◦ id2 cannot be extended to
monad, where L0X = LidX \ {∅}. One
might now try the functor id2 ◦ L0 to obtain
ZEP as an approach to extend binary oper-
ations on X to binary operations on LidX.
However, the following discussion shows some
problems. Consider we have a binary opera-
tion f : X ×X → X. It is clear that we can
think f as a Set-morphism. Applying Lid we
have then Lidf : Lid(X × X) → LidX such
that for any R ∈ Lid(X ×X) and x, y ∈ X,

Lidf(R)(z) =
∨

z=f(x,y)

R(x, y).

Unfortunately, Lidf is not a generalization of
f in the sense that we should have an opera-
tion on LidX. Indeed, we would like to have
an operation h : (id2 ◦ Lid)X → LidX, but it
is clear that this is possible only if we have
a natural transformation σ : Lid → id2 ◦ Lid.
Now, for X ×X we have

σX×X : Lid(X×X)→ Lid(X×X)×Lid(X×X).

As a conclusion of this discussion we can say
that ZEP may be obtained directly by Lid for
unary arithmetical operations only. Concern-
ing generalizations of terms, see [1], we adopt
a more functorial presentation of the set of
terms, as opposed to using the conventional
inductive definition of terms, where we bind
ourselves to certain styles of proofs. Even if
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a purely functorial presentation might seem
complicated, there are advantages when we
define corresponding monads, and, further,
a functorial presentation simplifies efforts to
prove results concerning compositions of mon-
ads. For a set A, the constant set functor
ASet is the covariant set functor which assigns
sets X to A, and mappings f to the iden-
tity map idA. The sum

∑
i∈I ϕi of covariant

set functors ϕi assigns to each set X the dis-
joint union

⋃
i∈I({i}×ϕiX), and to each mor-

phism X
f→ Y in Set the mapping (i,m) 7→

(i, ϕif(m)), where (i,m) ∈ (
∑

i∈I ϕi)X. Let
k be a cardinal number and (Ωn)n≤k be a fam-
ily of sets. We will write Ωnid

n instead of
(Ωn)Set× idn. Note that

∑
n≤k Ωnid

nX is the
set of all triples (n, ω, (xi)i≤n) with n ≤ k,
ω ∈ Ωn and (xi)i≤n ∈ Xn. A disjoint union
Ω =

⋃
n≤k{n}×Ωn is an operator domain, and

an Ω-algebra is a pair (X, (snω)(n,ω)∈Ω) where
snω : Xn → X are n-ary operations. The∑

n≤k Ωnid
n-morphisms between Ω-algebras

are precisely the homomorphisms between the
algebras. The term functor can now be de-
fined by transfinite induction. In fact, let
T 0

Ω = id and define

TαΩ = (
∑
n≤k

Ωnid
n) ◦

⋃
β<α

T βΩ

for each positive ordinal α. Finally, let

TΩ =
⋃
α<k̄

TαΩ

where k̄ is the least cardinal greater than
k and ℵ0. Clearly, (n, ω, (mi)i≤n) ∈
TαΩX, α 6= 0, implies mi ∈ T βiΩ X,

βi < α. A morphism X
f→ Y in Set

can also be extended to the corresponding
Ω-homomorphism (TΩX, (σnω)(n,ω)∈Ω)

TΩf−→
(TΩY, (τnω)(n,ω)∈Ω), where TΩf is defined to

be the Ω-extension of X
f→ Y ↪→ TΩY as-

sociated to (TΩY, (τnω)(n,ω)∈Ω). We can now
extend TΩ to a monad. Define ηTΩ

X (x) = x.
Further, let µTΩ

X = id?TΩX
be the Ω-extension

of idTΩX with respect to (TΩX, (σnω)(n,ω)∈Ω).

Proposition 2 ([9]). TΩ = (TΩ, η
TΩ , µTΩ) is

a monad.

Proposition 3 ([1]). (LidTΩ, η
LidTΩ , µLidTΩ),

denoted Lid •TΩ, is a monad.

3 Fuzzification of arithmetic

In [6] terms are described in a general set-
ting in a substitution theory. This means es-
sentially generalizing the underlying signature
to involving usage of the composed monad
Lid •TΩ. An effort to generalize the notion of
sentences can be found in [2]. The composed
functor TΩLid on the other hand is problem-
atic as we are not able to extend it to a corre-
sponding monad TΩ•Lid. The distinction be-
tween LidTΩ and TΩLid is important e.g. with
respect to approaches to fuzzy arithmetic, as
we need to understand if ‘fuzzy arithmetic’
produces terms in LidTΩ or TΩLid. In the lat-
ter a composition of substitutions is not pos-
sible as the underlying composed functor is
not extendable to a monad. We are thus re-
ferred to staying within the set LidTΩX, and
therefore we are NOT doing ‘arithmetic with
fuzzy’ which has been the default approach
for ‘fuzzy arithmetic’. Especially, arithmetic
need to be defined before fuzzification, thus,
Example 1 is not an approach to ‘fuzzy arith-
metic’. Fuzzy sets of arithmetic expressions,
like approximately x, are then represented
by mappings from TΩX to L. This is in our
view intuitively more appealing.

Example 2. [3] Consider the element
approx(x+y) of LTX, where L = Lid and
T = TΩ. With the substitution

x := approx 0
y := approx 60

applied to approx(x+y) we obtain the expres-
sion

approx(approx 0 + approx 60)

which is an element of LTLTX.
However, applying µLTX on
approx(approx 0 + approx 60) brings
µLTX (approx(approx 0 + approx 60)) to
become an element of LTX.

Let us focus on semantics, fuzzy natural num-
bers again. It is clear that ZEP can be applied
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to unary operations, which can be seen as fol-
lows:

Example 3. Consider (N, succ), where
succ : N → N, is the successor operation.
It is clear that succ can be extended to
fsucc = Lid succ by means of ZEP. In fact
this is just a ‘shift’ by one unit to the right
for A ∈ LidN. Notice that ZEP determines
fsucc(A)(0) = 0.

Let us now define a mapping succA : N →
LidN such that for all m ∈ N

succA(m)(n) =
∨

η(n)=succη(k)(m)

A(k)

It is clear we may generalize succA to
Lidsucc

A : LidN → LidLidN and the apply
µN. Thus, we can set for all B ∈ N,

B +A = (µN ◦ LidsuccA)(B) (4)

Proposition 4. Equation (4) coincides with
ZEP.

Proof. We have

(B +A)(y) = µN(LidsuccA(B))(y)

=
∨

D∈LidN
D(y) ∧ LidsuccA(B)(D)

=
∨

D∈LidN

∨
succA(x)=D

D(y) ∧B(x)

=
∨
x∈N

succA(x)(y) ∧B(x)

=
∨
x∈N

 ∨
y=succk(x)

A(k)

 ∧B(x)

=
∨
x∈N

∨
y=succk(x)

B(x) ∧A(k)

=
∨

y=x+k

B(x) ∧A(k).

Indeed it is clear that Proposition 4 confirms
Proposition 1, or at least can be seen as a
corollary to Proposition 1, which, of course,
was observed already in [9]. The current pa-
per, in fact, takes this observation as a start-
ing point for further work. Whereas Manes

([9]) uses Lid only, we suggest in the future
to take further steps and replace the functor
Lid with suitable other functors extendable to
monads. This then provides the instrumenta-
tion that enables ZEP to be generalized using
monadic techniques to apply far beyond just
using Lid. Note also that the multiplication
of a monad is rarely unique, or at least to say
that it is not known whether uniqueness of a
multiplication of a monad is a rule rather than
an exception. Note also that the multiplica-
tion of a monad is rarely unique, or at least
to say that it is not known whether unique-
ness of a multiplication of a monad is a rule
rather than an exception. The uniqueness of
the identity, on the other hand, is mostly true
([4]). This immediately then binds ZEP to
the (conjectured) non-uniqueness of the mul-
tiplication in Lid, and more generally, to any
multiplication in a monad based generalized
view of ZEP.

4 Conclusion

Fuzzy numbers need to be viewed based on
their underlying set functors together with the
operators found in selected algebras. Extend-
ability to monads is important as we addition-
ally need to handle substitutions, and indeed
compositions of substitutions. Examples in
this paper clearly motivates to use categori-
cal machinery for fuzzy arithmetics utilizing
its underlying signatures and algebras. How-
ever, it is not clear which kind of signature
and equational logic would have the described
semantics. The impact for fuzzy arithmetics
is yet to be seen and we will develop our con-
structions further in future works.
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