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Abstract

Interval orders play a significant role
in preference modeling since they do
not impose the transitivity of the in-
difference relation. For crisp rela-
tions this concept can be expressed
in different equivalent ways. For
fuzzy relations these definitions de-
pend on the t-norm we employ and
they are no longer equivalent. In this
work we study the connection among
the different notions of fuzzy inter-
val order. We prove that depending
on the t-norm chosen, some of the
definitions are more restrictive than
others.

Keywords: Additive preference
structure, completeness, interval or-
der, Ferrers property, biorder.

1 Introduction

Preference structures are at the basis of pref-
erence modeling theory. Given their impor-
tance, a large number of works devoted to the
topic can be found in the literature (see for ex-
ample [14, 15, 16], among many others). They
are triplets of binary relations that contain all
the information about the preferences of a de-
cision maker over a set of alternatives. The
three relations they include are called strict
preference, indifference and incomparability
relations. They cover the three answers the
decision maker can give when comparing two
of the alternatives. The preference structures

handled in the classical theory involve crisp
relations. Therefore, they are sometimes not
precise enough for capturing real life.
In order to model human decisions in a
more accurate way, fuzzy relations were in-
troduced [19]. They take a value between 0
and 1. For a fuzzy relation Q, that value ex-
presses the strength of the connection by Q
between the two alternatives considered.
Since fuzzy preference relations adapt better
to real life, they have become a topic of inter-
est (see for example, [1, 3, 4, 6, 7, 9, 10]).

Some preference structures like complete pre-
orders impose both the transitivity of the
strict preference and indifference relations.
However, a large number of experimental
studies reveal that individuals are inconsis-
tent with the transitivity of the indifference
(see [8, 17], among others). An interval order
is a preference structure that models coherent
decisions (the strict preference relation must
be transitive), and that is consistent with real
world: its indifference relation may be in-
transitive. The class of interval orders is one
of the most important classes of preference
structures without incomparability studied in
the theory of classical preference modeling. In
that case, this concept can be formalized by
means of different equivalent compositions of
preference (large and strong) and indifference
relations. In this work we study fuzzy pref-
erence structures and the connection among
those (equivalent in the crisp sets context)
properties.

The work is organized as follows. In the fol-
lowing section we recall some basic notions
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concerning crisp preference structures. In
Section 3 we recall the notion of additive fuzzy
preference structure and some definitions for
fuzzy relations that generalize the ones pre-
sented in Section 2. Section 4 contains the
equivalences that hold for crisp relations. In
Section 5 we investigate those equivalences for
fuzzy relations. Finally, in Section 6 we ad-
dress some conclusions.

2 Crisp preference structures

Suppose that a decision maker wants to judge
a set of alternatives A. Given two alterna-
tives, she can act in one of the following three
ways: (i) she clearly prefers one to the other;
(ii) the two alternatives are indifferent to her;
(iii) she is unable to compare the two alter-
natives. Accordingly, three (binary) relations
on A can be defined: the strict preference re-
lation P , the indifference relation I and the
incomparability relation J .

Recall that for a relation Q on A, its con-
verse or transpose is defined as Qt = {(b, a) |
(a, b) ∈ Q}, its complement as Qc = {(a, b) |
(a, b) /∈ Q} and its dual as Qd =

(
Qt

)c. One
easily verifies that the quadruplet (P, P t, I, J)
establishes a particular partition of A2.
Definition 2.1. [14] A preference structure
on A is a triplet (P, I, J) of relations on A
that satisfy:

(i) P is irreflexive, I is reflexive and J is
irreflexive;

(ii) P is asymmetrical, I and J are symmet-
rical;

(iii) P ∩ I = ∅, P ∩ J = ∅ and I ∩ J = ∅;
(iv) P ∪ P t ∪ I ∪ J = A2.

Every preference structure can be identified
with a unique reflexive relation called large
preference relation R = P ∪ I. This relation
leads back to the preference structure in the
following way:

(P, I, J) = (R ∩Rd, R ∩Rt, Rc ∩Rd) . (1)

We say that a relation R is complete if aRb
or bRa for all a, b in the set of alternatives A.

In [13] it was proven that the large preference
relation is complete if and only if the asso-
ciated preference structure does not connect
any pair of alternatives (a, b) by the incompa-
rability relation, that is, if J = ∅.

R complete ⇔ J = ∅.

A relation R satisfies the Ferrers property (see
among others [13, 14]) if

(aRb ∧ cRd) ⇒ (aRd ∨ cRb),

for all a, b, c, d in A.

A relation R is a biorder if

(aRb ∧ c 6Rb ∧ cRd) ⇒ aRd.

Let us denote the composition of two binary
relations Q1 and Q2 by Q1 ◦ Q2. That is,
a(Q1 ◦ Q2)b if and only if there exists c such
that aQ1c∧cQ2b. Then the equivalent compo-
sitional definition of biorder is R◦Rd◦R ⊆ R.

Definition 2.2. An interval order is a pref-
erence structure (P, I, J) such that J = ∅ and

P ◦ I ◦ P ⊆ P.

3 Fuzzy preference structures

3.1 Triangular norms

We recall that the binary operator T : [0, 1]×
[0, 1] → [0, 1] is a triangular norm or t-norm
for short if it is commutative, associative,
monotone and has 1 as neutral element. The
most important t-norms are the Minimum:
TM(x, y) = min(x, y), the Product TP(x, y) =
xy, Lukasiewicz: TL(x, y) = max(x+y−1, 0).
and the Drastic product:

TD(x, y) =
{

min(x, y) , if max(x, y) = 1,
0 , otherwise.

The drastic product is the smallest t-norm
and the minimum t-norm is the greatest one.
That is, for any t-norm T it holds that TD ≤
T ≤ TM.

On the other hand, we say that a value x ∈
(0, 1) is a zero-divisor of a t-norm T if there
exists a value y ∈ (0, 1) such that T (x, y) = 0.
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The minimum and the product are t-norms
that do not admit zero-divisors, while TL and
TD do admit them.
An important family of t-norms that ad-
mit zero-divisors are the rotation invariant t-
norms [11]. A rotation invariant t-norm is a
t-norm T that verifies

T (x, y) > z ⇔ T (x, 1− z) > 1− y,

for any x, y, z ∈ [0, 1].
These operators satisfy in particular that
T (x, y) > 0⇔ x+ y > 1.

Analogously, a triangular conorm or t-
conorm is a binary relation S : [0, 1]× [0, 1]→
[0, 1] commutative, associative, monotone and
that has 0 as neutral element.

It is easy to prove that t-norms and t-conorms
are closely related. For any t-norm T it holds
that the relation S defined as follows

S(x, y) = 1− T (1− x, 1− y),∀(x, y) ∈ [0, 1]2,

is a t-conorm. It is called dual t-conorm of T .
Conversely, for each t-conorm S the relation
T defined as T (x, y) = 1−S(1− x, 1− y) is a
t-norm.

A wide study of t-norms and t-conorms can
be found in [12].

3.2 Fuzzy binary relations

Crisp relations do not allow degrees of pref-
erence or indifference. This becomes a draw-
back for modeling real life. Fuzzy binary re-
lations take a value in the interval [0, 1] that
expresses the strength of the connection be-
tween two elements [19].

A fuzzy binary relation is defined as a function
Q from the cartesian product A× A into the
interval [0, 1]. For every pair (a, b) ∈ A × A,
the value Q(a, b) shows the degree of truth
of the fact that aQb in the crisp sense. The
complementary, transpose (or converse) and
dual of the binary relation Q are defined for
any (a, b) ∈ A×A as follows:

Qc(a, b) = 1−Q(a, b),
Qt(a, b) = Q(b, a),

Qd(a, b) = 1−Q(b, a).

In the fuzzy sets context the notion of
completeness admits different generalizations.
The two most important notions are the fol-
lowing ones. Given a relation Q we say that
it is

• Strongly complete:
if Q(a, b) = 1 or Q(b, a) = 1,∀a, b ∈ A.

• weakly complete:
if Q(a, b) +Q(b, a) ≥ 1, ∀a, b ∈ A.

3.3 Fuzzy preference structures

The notion of preference structure in the set-
ting of fuzzy relations was a topic of debate
for several years (see [1]) until Van de Walle
et al. [18] introduced the notion of additive
fuzzy preference structure.
Definition 3.1. An additive fuzzy preference
structure on the set of alternatives A is a
triplet of fuzzy binary relations (P, I, J) satis-
fying

• P is irreflexive, I is reflexive and J is
reflexive.

• P is TL-asymmetric (P ∩TL
P t = ∅), I

and J are symmetric.

• P ∩TL
I = P ∩TL

J = I ∩TL
J = ∅.

• (P ∪SL
I)c = P t ∪SL

J .

Every preference structure has associated a
fuzzy large preference relation R obtained as
R = P + I. The value R(a, b) expresses the
degree of truth of the assertion “a is at least
as good as b”. Given that relation R we can
build many different AFPS by means of gen-
erators [2]. A generator i is a symmetric func-
tion i : [0, 1]2 → [0, 1], such that TL ≤ i ≤ TM .
Given a reflexive relation R and a generator
i, we can obtain an additive fuzzy preference
structure as follows:

P = R− i(R,Rt) ,
I = i(R,Rt) ,
J = I − (R+Rt − 1) .

Additive fuzzy preference structures verify the
following important property:

P (a, b) + P (b, a) + I(a, b) + J(a, b) = 1.
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For crisp relations (any of the definitions of)
completeness of the large preference relation
R is equivalent to the condition J = ∅. In this
context the following equivalence holds:
Proposition 3.1. [5] Let R be a reflexive
fuzzy relation R and J the incomparability
relation of the preference structure obtained
from R by a generator i. It holds that

J = ∅ ⇔
{
R is weakly complete
i|S = TL

where S = {(x, y) ∈ [0, 1]2 : ∃(a, b) ∈
A2 with R(a, b) = x,R(b, a) = y}.

3.4 Generalized definitions

We introduce some appropriate generaliza-
tions of the concepts of Ferrers, biorder and
interval order for fuzzy relations and addi-
tive fuzzy preference structures. We will stay
within the usual setting of t-norms.
Definition 3.2. [10] Given a t-norm T and
a t-conorm S, a fuzzy binary relation Q on
A is (T, S)-Ferrers if the following inequality
holds:

T (Q(a, b), Q(c, d)) ≤ S(Q(a, d), Q(c, b))

for any a, b, c, d ∈ A.

When S is the dual t-conorm of T , the (T, S)-
Ferrers property is just called T -Ferrers.
Definition 3.3. [9] Given a fuzzy binary re-
lation Q on A, Q is a T -biorder if it holds
that

Q ◦T Qd ◦T Q ⊆ Q ,
or, equivalently,

T (T (Q(a, b), 1−Q(c, b)), Q(c, d)) ≤ Q(a, d)

for any a, b, c, d ∈ A.
Definition 3.4. [3] An additive fuzzy prefer-
ence structure without incomparability (P, I)
on a set of alternatives A is called a T -interval
order if it holds that

P ◦T I ◦T P ⊆ P ,
or, equivalently,

T (T (P (a, b), I(b, c)), P (c, d)) ≤ P (a, d)

for any a, b, c, d ∈ A.

Clearly, if T1 ≤ T2, every T2-Ferrers relation
is also T1-Ferrers, every T2-biorder is also a
T1-biorder and every T2-interval order is also
a T1-interval order.

4 Crisp interval order

We first consider classical or crisp relations.
In this context, it is well-known ([13, 14]) that

R is Ferrers ⇔ R is a biorder.

It is easy to prove that any reflexive relation
satisfying the Ferrers property is complete.
We have already commented that the relation
R is complete if and only if the associated
preference relation does not admit incompa-
rability relation (P, I). In this setting it is
also well-known (see again [13, 14]) that

P is Ferrers ⇔ R is Ferrers.

More precisely, for interval orders, Montjardet
[13] showed the equivalence among the follow-
ing notions:

Proposition 4.1. [13] Let (P, I) be an AFPS
without incomparability and R its large pref-
erence relation. The following conditions are
equivalent.

a) (P, I) is an interval order.

b) P is Ferrers.

c) P is a biorder.

d) R is Ferrers.

e) R is a biorder.

These definitions are equivalent only if we do
require the absence of incomparable elements
in the AFPS. If we do not require the rela-
tion R to be complete, that is, if we do not
require J = ∅, we can still consider the five
previous properties and study their relation-
ship. In that general case, we still have the
equivalence between the notion of Ferrers and
biorder for a binary relation Q, regardless it
is reflexive or not.
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Proposition 4.2. Let Q be a crisp binary re-
lation on A, it holds that

Q is Ferrers ⇔ Q is a biorder.

In particular, we have the equivalence be-
tween properties b) and c) and between prop-
erties d) and e). It is also easy to prove that
whenever R is Ferrers (or a biorder) it is com-
plete. Therefore whenever R is Ferrers, P is
Ferrers (a biorder) and P ◦ I ◦ P ⊆ P . It
also holds that for any preference structure
(P, I, J), if P is Ferrers then P ◦ I ◦ P ⊆ P ,
but the converse implications do not hold.
The following proposition summarizes the re-
lationship among the five conditions of 4.1
when we do not impose any completeness con-
dition.

Proposition 4.3. Let (P, I, J) be a (crisp)
preference structure and let R be its large pref-
erence relation. Then,

i) (P, I, J) is an interval order, R is a
biorder and R is Ferrers are equivalent
properties.

ii) P is a biorder and P is Ferrers are equiv-
alent properties.

iii) (P, I, J) is an interval order implies that
P is a biorder. In addition to this, P is
a biorder implies P ◦ I ◦ P ⊆ P . The
converse implications to the ones showed
in this item do not hold.

The above proposition could be outlined as
follows:

(P, I, J) int. order⇔ R Ferrers⇔ R biorder
⇓6⇑

P Ferrers⇔ P biorder
⇓6⇑

P ◦ I ◦ P ⊆ P

5 Fuzzy interval order

Once we have considered the crisp case, we
study the fuzzy sets context. Let us recall
that for fuzzy relations every one of the five
conditions of Proposition 4.1 admits many

different generalizations depending on the t-
norm we consider. In contrast to the classi-
cal case, we begin by those preference struc-
tures that do not admit incomparable alter-
natives, in this case we consider the converse
order. Thus, we start by showing the gen-
eral results for any additive fuzzy preference
structure (with or without incomparable ele-
ments). Later, we restrict our study for the
case of AFPS whose incomparability relation
is empty.

5.1 The general case

The equivalence between Ferrers and biorder
still holds for fuzzy relations but only for a
particular family of t-norms.
Theorem 5.1. [5] Consider a t-norm T .
Then the following statements are equivalent:

(i) Any T -Ferrers relation is a T -biorder.

(ii) Any T -biorder is a T -Ferrers relation.

(iii) T is rotation-invariant:

T (x, y) ≤ z ⇔ T (x, 1− z) ≤ 1− y,
for all x, y, z ∈ [0, 1].

In particular, the equivalence holds for any re-
flexive relation R and for any strict preference
relation P .

If we admit incomparable alternatives, for any
AFPS there is a unique large preference rela-
tion associated. However, we can get many
different preference structures from the same
R, one for each generator. Thus, it is not in-
different now to start by the AFPS (P, I, J)
or by the associated large preference relation
R, as it happens in the crisp case. The results
we present next concern the generator i = TL,
as it has showed an appropriate behavior (see
Proposition 3.1).
Theorem 5.2. Let us consider a reflexive re-
lation R. Let us consider the preference struc-
ture (P, I, J) obtained from R by the generator
i = TL and a t-norm T . Then

R T − Ferrers ⇒ P T − Ferrers

if and only if T satisfies that T (x, y) > 0 for
all (x, y) ∈ [0, 1]2 such that x+ y > 1.
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The correspondent implication for T -biorder
is fulfilled for a more restrictive class of t-
norms, as it shows the following theorem.

Theorem 5.3. Let us consider a reflexive re-
lation R. Let us consider the preference struc-
ture (P, I, J) obtained from R by the generator
i = TL and a t-norm T . Then

R T − biorder ⇒ P T − biorder

if and only if T is rotation-invariant.

We now study the relationship between the
property P ◦T I ◦T P ⊆ P and the notion of
P T -biorder.
It is easy to prove that if P is a T -biorder then
it also holds that P ◦T I ◦T P ⊆ P .

Proposition 5.4. Let (P, I, J) be an additive
fuzzy preference structure and let T be a t-
norm. It holds that

P ◦T P d ◦T P ⊆ P ⇒ P ◦T I ◦T P ⊆ P.

This result follows from the additive property
that any AFPS satisfies. Given the results
obtained for crisp relations, the converse im-
plication does not hold for any t-norm.

From Theorems 5.2, 5.3 and Proposition 5.4
we obtain the following corollaries, where we
consider two different starting points: an ad-
ditive fuzzy preference structure and a reflex-
ive binary relation.

Corollary 5.5. Let (P, I, J) be an additive
fuzzy preference structure and let T be a
rotation-invariant t-norm. It holds that P is
T -Ferrers if and only if P is a T -biorder and
this implies that P ◦T I ◦T P ⊆ P . The con-
verse implication is not true.

Corollary 5.6. Let us consider a reflexive re-
lation R. Let us consider the preference struc-
ture (P, I, J) obtained from R by the genera-
tor i = TL and a rotation-invariant t-norm T .
Then

i) R is a T -biorder iff R is T -Ferrers.

ii) P is a T -biorder iff P is T -Ferrers.

iii) If R is a T -biorder, then (P, I, J) is a T -
interval order and P is a T -biorder.

5.2 The case J = ∅
Next we consider a particular case: there are
not incomparable elements in the AFPS. Of
course, all the previous results presented in
the general case can be considered now. How-
ever, we can also improve the obtained results
or add new ones, when the condition J = ∅ is
imposed, that is, when we consider the deci-
sion maker is capable to compare all the out-
comes.

Concerning the Ferrers property, it is prop-
agated between the strict preference relation
of a preference structure and the associated
large preference relation as follows.
Theorem 5.7. [5] Consider a reflexive binary
fuzzy relation R with corresponding AFPS
(P, I, J) generated by means of i = TL. The
following equivalence holds, for any t-norm T :

R is weakly complete and T -Ferrers ⇔ J = ∅
and P is T -Ferrers .

Concerning the notion of T -biorder, not every
t-norm propagates this property.
Theorem 5.8. [5] Consider a t-norm T . The
following statements are equivalent:

(i) For any reflexive R with corresponding
AFPS (P, I, J) generated by means of i =
TL it holds that if R is a T -biorder, then
J = ∅ and P is a T -biorder.

(ii) For any reflexive R with corresponding
AFPS (P, I, J) generated by means of i =
TL it holds that if J = ∅ and P is a T -
biorder, then R is a T -biorder.

(iii) T is rotation-invariant.

As we showed in the general case, for any pref-
erence structure, if P is a T -biorder, it holds
that P ◦T I ◦T P ⊆ P . The converse im-
plication is not that easy to deal with even
for preference structures without incompara-
bility. Although it is false in general, we have
found some classes of t-norms for which the
implication holds.
Proposition 5.9. For all t-norm T without
zero-divisors,

P ◦T I ◦T P ⊆ P ⇒ P T − biorder
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Rotation invariant t-norms have a good be-
haviour when propagating the notion of Fer-
rers property and biorder. It is therefore rea-
sonable to assume that they will have a good
behavior for interval orders. However, we can
provide the following proposition.
Proposition 5.10. Let us consider a t-norm
such that it fulfils one of the following require-
ments:

1. 0.5 is a zero divisor of T .

2. For a pair (x, y) ∈ (0, 0.5)2 such that
T (x, y) = 0, it holds that min(x, y) ≥
(1−max(x, y))/2.

Then there exists a T -interval order (P, I)
such that P is not a T -biorder.

An immediate consequence of the previous
proposition is that if T -interval order im-
plies T -biorder, then T (x, 1 − x) > 0 for all
x ∈ (0, 1). Therefore, Proposition 5.9 cannot
be extended to rotation-invariant t-norms.

We have also proven that if P ◦T I ◦T P ⊆ P
implies that P is a T -biorder, then either T
has no zero-divisors or all its zero-divisors are
smaller than 0.5.

At this point we could think that the impli-
cation does not hold for any t-norm with zero
divisors. However, we have proven that for
some t-norms with zero divisors the implica-
tion holds.
Proposition 5.11. Let (Tα)α∈(0,1/3) be the
class of t-norms defined as follows

Tα(x, y) =
{

min(x, y) , if max(x, y) > α,
0 , otherwise.

For any preference structure without incom-
parability (P, I) such that P ◦Tα I ◦Tα P ⊆ P
it holds that the preference relation P is a Tα-
biorder.

From all the previous results, we can conclude
the following corollary.
Corollary 5.12. Let (P, I) be an additive
fuzzy preference structure without incompara-
bility and let R be its large preference relation.
Let T be a rotation-invariant t-norm. Then
the following statement are equivalent:

i) P is T -Ferrers.

ii) P is a T -biorder.

iii) R is T -Ferrers.

iv) R is a T -biorder.

Moreover, any of them implies that (P, I) is
T -interval order, but the converse is not true
in general.

6 Conclusion

For crisp preference structures whose incom-
parability relation is empty, there are five dif-
ferent equivalent ways of expressing the con-
cept of interval order. We study if that equiv-
alences hold for fuzzy relations both when the
incomparability relation is empty and when
we do not impose any completeness condition.
We focus on the notion of interval order, since
it is one of the most commonly used prefer-
ence structures. From the results obtained,
it follows that this definition is the weakest
property of the original five for AFPS without
incomparability, when we consider the impor-
tant class of the rotation-invariant t-norms.
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[15] B. Roy (1985). Méthodologie Multicritère
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