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Abstract

The paper is devoted to the appli-
cation of extensions of dynamic in-
formation systems to state predic-
tion problems. A dynamic informa-
tion system can describe states of
processes observed in a given sys-
tem and transitions among them.
If we extend a given dynamic in-
formation system by adding some
new transitions among states which
have not been observed yet, then
we are interested in degrees of con-
sistency of added transitions with
the knowledge about transitions in-
cluded in the original dynamic in-
formation system. Such information
can be helpful in predicting possibil-
ity of appearing in the future transi-
tions among states in the examined
system. In the paper, we propose
some approach how to compute a
possibility factor of appearing new
transitions among states.

Keywords: Dynamic information
systems, Prediction.

1 Introduction

Information systems can be used to represent
the knowledge of the behavior of concurrent
systems [4]. In this approach, an informa-
tion system represented by a data table in-
cludes the knowledge of the global states of a
given concurrent system CS. The columns

of the table are labeled with names of at-
tributes (treated as processes of CS). Each
row labeled with an object (treated as a global
state of CS) includes a record of attribute val-
ues (treated as local states of processes). In
a general case, a concurrent system is a sys-
tem consisting of some processes, whose local
states can coexist together and they are partly
independent. For example, we can treat sys-
tems consisting of economic processes, finan-
cial processes, biological processes, genetic
processes, meteorological processes, etc. as
concurrent systems. Dynamic information
systems were proposed by Z. Suraj in 1998
[6] to represent the knowledge of states of
concurrent systems and transitions between
them. Transitions between states were de-
scribed by binary transition relations. In this
paper, we extend a notion of dynamic infor-
mation systems to the so-called multistage dy-
namic information systems. These systems
enable us to represent multistage transitions
among states (observed sequences of states
called also episodes). Therefore, transitions
among states are described by polyadic tran-
sition relations. To represent such relations
we propose multistage decision transition sys-
tems. We are especially interested in exten-
sions (consistent and partially consistent) of
multistage decision transition systems. A par-
tially consistent extension of a given multi-
stage decision transition system consists of
new transitions among states which are to-
tally consistent or consistent only to a certain
degree (partially consistent) with the knowl-
edge included in the original multistage de-
cision transition system. The degree of con-
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sistency can be between 0 and 1, 0 for the
total inconsistency and 1 for the total con-
sistency. We assume that the knowledge in-
cluded in multistage decision transition sys-
tems is expressed by transition rules, which
are minimal decision rules understood from
the rough set point of view. We use the help-
ful theorem given in [1] in order to compute a
degree of consistency of a given episode from
any extension of a given multistage decision
transition system. This theorem enables us to
determine which transitions (episodes) in the
original multistage decision transition system
generate transition rules which are not satis-
fied by the tested episode from the extension.
It is worth noting, that if we use that theo-
rem, then we do not calculate any transition
rules in a multistage decision transition sys-
tem. This is an important property from the
computational complexity point of view, es-
pecially, if we have high dimensional data (for
example, in genetics).

The rest of the paper is organized as follows.
In Section 2, a brief review of the basic con-
cepts concerning information systems is given.
In Section 3, basic definitions concerning mul-
tistage dynamic information systems are pre-
sented. Section 4 presents how to compute a
degree of consistency of a given episode from
any extension of a given multistage decision
transition system. Section 5 gives an illustra-
tive example. Finally, Section 6 consists of
some conclusions.

2 Information System Rudiments

First, we recall the basic concepts of rough
set theory concerning information systems (cf.
[3], [5], [2]).

An information system is a pair S = (U,A),
where U is a set of objects, A is a set of at-
tributes, i.e., a : U → Va for a ∈ A, where Va

is called a value set of a. A decision system
is a pair DS = (U,A), where A = C ∪ D,
C ∩ D = ∅, and C is a set of condition at-
tributes, D is a set of decision attributes. Any
information (decision) system can be repre-
sented as a data table, whose columns are la-
beled with attributes, rows are labeled with

objects, and entries of the table are attribute
values.

We associate a formal language L(S) with ev-
ery information system S = (U,A). Formu-
las of L(S) are built from atomic formulas in
the form (a, v), where a ∈ A and v ∈ Va, by
means of propositional connectives: negation
(¬), disjunction (∨), conjunction (∧), impli-
cation (⇒) and equivalence (⇔) in the stan-
dard way. The fact that object u ∈ U satisfies
formula φ of L(S) (see [3]) will be denoted by
u |= φ. If φ is a formula of L(S), then the set
|φ|S = {u ∈ U : u |= φ} is called the meaning
of formula φ in S.

Let S = (U,A) be an information system and
B ⊆ A. The formula of L(S) containing only
atomic formulas in the form (a, v), where a ∈
B, v ∈ Va, will be denoted by φ|B.

A rule in the information system S is a for-
mula of the form φ ⇒ ψ, where φ and ψ are
referred to as the predecessor and the succes-
sor of a rule, respectively. The rule φ ⇒ ψ is
true in S if |φ|S ⊆ |ψ|S . In our approach, we
consider rules in the form φ⇒ ψ, where φ is a
conjunction of atomic formulas of L(S) and ψ
is an atomic formula of L(S). A rule is called
minimal in S if and only if removing any
atomic formula from φ results in the rule be-
ing not true in S. The set of all minimal rules
true in S will be denoted by Rul(S). We as-
sume that Rul(S) includes only such minimal
rules true in S which are also realizable in S,
i.e., |φ ∧ ψ|S 6= ∅ for each (φ⇒ ψ) ∈ Rul(S).

Let DS = (U,C ∪ D) be a decision system.
A decision rule in S is a formula of L(DS)
in the form φ|C ⇒ ψ|D. φ|C and ψ|D are re-
ferred to as condition and decision parts of
the rule, respectively. In our approach, we
consider decision rules such that φ is a con-
junction of atomic formulas of L(DS) and ψ
is an atomic formula of L(DS). Each decision
rule specifies a decision that should be taken
when conditions pointed out by condition at-
tributes are satisfied.

In the approach presented in this paper, we
assume that the knowledge included in a given
information system S (or a decision system
DS) is expressed by means of all minimal (de-
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cision) rules, true and realizable in S (or DS).

A crucial notion in the presented approach is
an extension of an information system.

Let S = (U,A) be an information system. An
information system S∗ = (U∗, A∗) is called
an extension of S if and only if the follow-
ing conditions are satisfied: (1) U ⊆ U∗,
(2) card(A) = card(A∗), (3) ∀

a∈A
∃

a∗∈A∗
Va∗ =

Va and a∗(u) = a(u) for all u ∈ U .

Each extension S∗ of a given information sys-
tem S includes the same number of attributes
and only such objects whose attribute values
appeared in the original table representing S.
Moreover, the data table representing S is a
part of the data table representing S∗, i.e., all
objects which appear in S, also appear in S∗.
According to requirements (2) and (3), for the
rest of the paper, the sets A and A∗ will be
marked with the same letter A.

Analogously, we define an extension of a de-
cision information system DS.

3 Multistage Dynamic Information
Systems (MDISs)

In general, a description of concurrent sys-
tems by means of information systems does
not cover their dynamic behavior, i.e., an in-
formation system includes only the knowledge
of global states observed in a given concurrent
system. In [6], dynamic information systems
have been proposed for a description of con-
current systems. A dynamic information sys-
tem additionally includes information about
transitions between global states observed in
a given concurrent system. So, the dynamics
is expressed by a transition relation defined in
a dynamic information system and the term
of a dynamic information system should be
understood in this sense. Here, we give some
crucial notions concerning dynamic informa-
tion systems.

Definition 3.1 A transition system is a pair
TS = (U, T ), where U is a nonempty set of
states and T ⊆ U ×U is a transition relation.

It is easy to see that in Definition 3.1, a tran-
sition relation is a binary relation over the set
U of states.

Definition 3.2 A dynamic information sys-
tem is a tuple DIS = (U,A, T ), where S =
(U,A) is an information system called the un-
derlying system of DIS and TS = (U, T ) is a
transition system.

The underlying system includes global states
of a given concurrent system whereas a tran-
sition system describes transitions between
these global states.

Now, we extend a notion of dynamic informa-
tion systems to the so-called multistage dy-
namic information systems (in short, MDISs).
If we are interested in sequences of changes of
global states, then we should represent such
changes by means of polyadic relations over
the sets of global states. Therefore, we pro-
pose to use the polyadic transition relation in
the definition of a dynamic information sys-
tem. Appropriate definitions are given below.

Definition 3.3 A multistage transition sys-
tem is a pair MTS = (U, T ), where U is
a nonempty set of states and T ⊆ Uk is a
polyadic transition relation, where k > 2.

Definition 3.4 A multistage dynamic infor-
mation system is a tuple MDIS = (U,A, T ),
where S = (U,A) is an information system
called the underlying system of MDIS and
MTS = (U, T ) is a multistage transition sys-
tem.

Each element of a multistage transition rela-
tion T in a multistage dynamic information
system MDIS = (U,A, T ) is a sequence of
global states (from the set U) which can be
referred to as an episode.

Definition 3.5 Let MDIS = (U,A, T )
be a multistage dynamic information sys-
tem, where T ⊆ Uk. Each element
(u1, u2, . . . , uk) ∈ T , where u1, u2, . . . , uk ∈
U , is called an episode in MDIS.

A dynamic information system can be pre-
sented by means of data tables represent-
ing information systems in the Pawlak’s sense
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(see [2]). In this case, each dynamic informa-
tion system DIS is depicted by means of two
data tables. The first data table represents
an underlying system S of DIS that is, in
fact, an information system. The second one
represents a decision system that is further re-
ferred to as a decision transition system. This
table represents transitions determined by a
transition relation. Analogously, we can use a
suitable data table to represent a multistage
transition system. Such a table will repre-
sent the so-called multistage decision transi-
tion system.

Definition 3.6 Let MTS = (U, T ) be a mul-
tistage transition system. A multistage de-
cision transition system is a pair MDTS =
(UT , A

1 ∪ A2 ∪ . . . ∪ Ak), where each t ∈
UT corresponds exactly to one element of
the polyadic transition relation T whereas at-
tributes from the set Ak determine global
states of the k-th domain of T .

Each object in a multistage decision transi-
tion system represents one episode in a given
multistage dynamic information system.

If k is fixed, we can talk about a k-adic transi-
tion relation, a k-stage transition system and
a k-stage dynamic information system.

For a given multistage decision transition sys-
tem, we can consider its elementary decision
transition subsystems defined as follows.

Definition 3.7 An elementary decision tran-
sition subsystem of a multistage decision tran-
sition system MDTS = (UT , A

1 ∪ A2 ∪ . . . ∪
Ak) is a decision transition system DTS(i, i+
1) = (UT , A

i∪Ai+1), where: i ∈ {1, ..., k−1}.
In an elementary decision transition subsys-
tem, we can consider some rules called, in
short, elementary transition rules.

Definition 3.8 Let DTS(i, i+1) = (UT , A
i∪

Ai+1) be an elementary decision transition
subsystem. An elementary transition rule in
DTS(i, i + 1) is a formula of a formal lan-
guage L(DTS(i, i + 1)) in the form φ|Ai ⇒
ψ|Ai+1, where φ|Ai and ψ|Ai+1 are formulas of
L(DTS(i, i + 1)) restricted to the sets of at-
tributes Ai and Ai+1, respectively.

It is easy to see that elementary transition
rules are, in fact, decision rules. In our ap-
proach, we will be interested in elementary
transition rules in the form of φ|Ai ⇒ ψ|Ai+1 ,
where φ|Ai is a conjunction of atomic formulas
of L(DTS(i, i + 1)) and ψ|Ai+1 is an atomic
formula of L(DTS(i, i + 1)). Moreover, the
rules considered will be minimal, true and re-
alizable in a given elementary decision transi-
tion subsystem. φ|Ai and ψ|Ai+1 are referred
to as condition and decision parts of a given
elementary transition rule, respectively.

Example 3.1 As an example we take daily
exchange rates between the Polish zloty and
two currencies: the US dollar (marked with
u) and the euro (marked with e). A data ta-
ble consists of daily exchange rates for each
business day. For simplicity, we consider only
a selected fragment of the table consisting of
seven consecutive business days. For the ta-
ble, we build an information system in the fol-
lowing way. Attributes correspond to curren-
cies, whereas objects correspond to consecu-
tive business days. The meaning of values of
attributes is the following:

• -1 denotes decreasing a given exchange
rate in relation to the previous exchange
rate,

• 0 denotes remaining a given exchange
rate on the same level in relation to the
previous exchange rate,

• 1 denotes increasing a given exchange
rate in relation to the previous exchange
rate.

An information system S = (U,A) is shown
in Table 1. Formally, we have: the set of
objects U = {u1, u2, . . . , u7}, the set of at-
tributes A = {u, e}, the sets of attribute values
Vu = {−1, 1}, Ve = {−1, 0, 1}.
To represent episodes (transitions among
states) as sequences of three consecutive global
states we build a multistage decision transi-
tion system MDTS shown in Table 2. We
obtain five episodes t1, t2, . . . , t5. We can
say that attributes from the set A1 determine
global states in the time instant τ , attributes
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Table 1: An information system S.
U/A u e

u1 -1 -1
u2 -1 -1
u3 1 1
u4 1 -1
u5 -1 1
u6 -1 0
u7 1 0

from the set A2 determine global states in the
time instant τ + 1 and attributes from the set
A3 determine global states in the time instant
τ + 2.

Table 2: A multistage decision transition sys-
tem MDTS.
UT /A

1 ∪A2 ∪A3 u1 e1 u2 e2 u3 e3

t1 -1 -1 -1 -1 1 1
t2 -1 -1 1 1 1 -1
t3 1 1 1 -1 -1 1
t4 1 -1 -1 1 -1 0
t5 -1 1 -1 0 1 0

In the multistage decision transition system
MDTS = (UT , A

1 ∪A2 ∪A3), we can distin-
guish two elementary decision transition sub-
systems: DTS(1, 2) = (UT , A

1∪A2) shown in
Table 3 and DTS(2, 3) = (UT , A

2∪A3) shown
in Table 4.

Table 3: An elementary decision transition
subsystem DTS(1, 2) of MDTS.

UT /A
1 ∪A2 u1 e1 u2 e2

t1 -1 -1 -1 -1
t2 -1 -1 1 1
t3 1 1 1 -1
t4 1 -1 -1 1
t5 -1 1 -1 0

In the elementary decision transition subsys-
tem DTS(1, 2), we have, for example, the fol-
lowing elementary transition rules: (u1,−1)∧
(e1,−1) ⇒ (u2,−1), (u1,−1) ∧ (e1,−1) ⇒
(e2,−1) which are minimal, true and real-
izable. In the elementary decision transi-
tion subsystem DTS(2, 3), we have, for exam-
ple, the following elementary transition rules:

Table 4: An elementary decision transition
subsystem DTS(2, 3) of MDTS.

UT /A
2 ∪A3 u2 e2 u3 e3

t1 -1 -1 1 1
t2 1 1 1 -1
t3 1 -1 -1 1
t4 -1 1 -1 0
t5 -1 0 1 0

(e2, 0)⇒ (e3, 0), (u2,−1) ∧ (e2,−1)⇒ (e3, 1)
which are minimal, true and realizable.

4 Some Issues on Extensions of
MDISs

The extensions of dynamic information sys-
tems have been considered in [7], [2]. In this
paper, we focus only on the extensions of mul-
tistage decision transition systems. Analo-
gously to definition of extensions of informa-
tion systems, we define an extension of a mul-
tistage decision transition system. So, any
nontrivial extension of a given multistage de-
cision transition system MDTS = (UT , A

1 ∪
A2∪ . . .∪Ak) includes new episodes such that
for each episode t∗ we have a(t∗) ∈ Va for each
a ∈ (A1 ∪A2 ∪ . . . ∪Ak).

In this section, we are interested in comput-
ing a degree of consistency (called a consis-
tency factor) of a given episode from any ex-
tension of a given multistage decision transi-
tion system MDTS with the knowledge in-
cluded in MDTS. We give an efficient algo-
rithm for computing consistency factors (Al-
gorithm 2). This algorithm has a polynomial
time complexity. An approach proposed here
does not involve computing any rules from an
original decision system DS. At the begin-
ning, we present a significant theorem given
in [1] allowing us to determine whether the
new object added to the original decision sys-
tem DS satisfies all minimal decision rules,
true and realizable in DS, without comput-
ing such rules. Here, the theorem taken from
[1] is formulated for decision systems and ex-
pressed by means of the formalism used in the
paper.
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Theorem 4.1 Let DS = (U,C ∪ D) be a
decision system, DS∗ = (U∗, C ∪ D) be its
extension, Rul(DS) be a set of all minimal
decision rules true and realizable in DS and
u∗ ∈ U∗. For each u ∈ U let Mu = {a ∈ C :
a(u∗) = a(u)} and P d

u = {d(u′) : u′ ∈ U and
∀

a′∈Mu

a′(u′) = a′(u)} for each d ∈ D. The ob-

ject u∗ satisfies all rules from Rul(DS) if and
only if for any u ∈ U and d ∈ D one of the
following requirements is satisfied:

1. card(P d
u ) ≥ 2,

2. card(P d
u ) = 1 and d(u∗) = d(u).

One can find the proof of Theorem 4.1 in [1],
[9].

In order to compute a consistency factor of
a given episode t∗ from any extension of a
given multistage decision transition system
MDTS = (UT , A

1∪A2∪ . . .∪Ak) we create a
family DTS of elementary decision transition
subsystems, i.e., DTS = {DTS(i, i + 1) =
(UT , A

i ∪ Ai+1)}i=1,...,k−1. Next, the consis-
tency factor ξDTS(i,i+1)(t∗) of the episode t∗

with the knowledge included in DTS(i, i+ 1)
is computed for each subsystem DTS(i, i+ 1)
from the family DTS. Finaly, the consistency
factor ξMDTS(t∗) of the episode t∗ with the
knowledge included in MDTS is calculated
as (see Algorithm 1):

ξMDTS(t∗) =
k−1∏
i=1

ξDTS(i,i+1)(t
∗)

The consistency factor ξDTS(i,i+1)(t∗) of the
episode t∗ with the knowledge included in
DTS(i, i + 1) is defined in the same way as
the consistency factor ξDS(u∗) of the object
u∗ ∈ U with the knowledge included in a de-
cision system DS = (U,C ∪D).

Definition 4.1 Let DS = (U,C ∪ D) be a
decision system, DS∗ = (U∗, C ∪ D) its ex-
tension and u∗ ∈ U∗. A consistency factor
ξDS(u∗) of the object u∗ ∈ U∗ with the knowl-
edge included in a decision system DS =
(U,C ∪D) is defined as

ξDS(u∗) = 1− card(Ũ)
card(U)

,

where Ũ is a set of objects from U generating
minimal decision rules true and realizable in
DS, which are not satisfied by the object u∗ ∈
U∗.

It is easy to see that if a new object u∗

from the extension DS∗ of a decision system
DS satisfies each minimal decision rule true
and realizable in DS, then Ũ = ∅. Hence,
ξDS(u∗) = 1, i.e., we can say that the object
u∗ is totally consistent (or in short, consis-
tent) with the knowledge included in DS and
expressed by means of all minimal decision
rules true and realizable in DS. On the other
hand, if each object u in a decision system DS
generates at least one rule which is not satis-
fied by the object u∗, then Ũ = U . Hence,
ξDS(u∗) = 0, i.e., we can say that the object
u∗ is totally inconsistent with the knowledge
included in DS and expressed by means of all
minimal decision rules true and realizable in
DS.

Determining a consistency factor for each
episode of any extension of a given multistage
decision transition system MDTS we can talk
about the consistent or partially consistent
extension of MDTS.

Definition 4.2 Let MDTS = (UT , A
1∪A2∪

. . . ∪ Ak) be a multistage decision transition
system and MDTS∗ = (U∗T , A

1∪A2∪. . .∪Ak)
be its extension. MDTS∗ is called a con-
sistent extension of MDTS if and only if
ξMDTS(t∗) = 1 for all episodes t∗ ∈ U∗T . Oth-
erwise, i.e., if there exists an episode t∗ ∈
U∗T such that ξMDTS(t∗) < 1, then MDTS∗

is called a partially consistent extension of
MDTS.

5 State Prediction with Extensions
of MDISs

We can apply computing a consistency fac-
tor of a given episode from the extension of
a given multistage decision transition system
MDTS to predicting future states which can
appear in the system described by MDTS.
We can assume that episodes with a greater
consistency factor should appear more often
in the future. An example given in this sec-
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Algorithm 1: Algorithm for computing a consis-
tency factor of an episode belonging to the extension
of a given multistage decision transition system

Input : A multistage decision transition system
MDTS = (UT , A

1 ∪A2 ∪ . . . ∪Ak), an
episode t∗ from any extension of MDTS.

Output: A consistency factor ξMDTS(t∗) of the
episode t∗ with the knowledge included in
MDTS.

ξMDTS(t∗)←− 1;
for each elementary decision transition subsystem
DTS(i, i+ 1) = (UT , A

i ∪Ai+1) of MDTS do
Compute ξDTS(i,i+1)(t

∗) using Algorithm 2
(treat DTS(i, i+ 1) as a decision system and t∗

as an object in a decision system);
ξMDTS(t∗)←− ξMDTS(t∗) · ξDTS(i,i+1)(t

∗);
end

Algorithm 2: Algorithm for efficient computing a
consistency factor of an object belonging to the exten-
sion of a decision system

Input : A decision system DS = (U,C ∪D), an
object u∗ belonging to the extension of DS.

Output: A consistency factor ξDS(u∗) of the object
u∗ with the knowledge included in DS.

Ũ ←− ∅;
for each u ∈ U do

for each a ∈ C do
if a(u) 6= a(u∗) then

a(u)←− ∗;
end

end
end
Remove each object u ∈ U such that ∀

a∈C
a(u) = ∗;

for each u ∈ U do
Mu ←− {a ∈ C : a(u) 6= ∗};
for each d ∈ D do

P d
u ←− {d(u′) : u′ ∈ U and
∀

a′∈Mu

a′(u′) = a′(u)};
if card(P d

u ) = 1 and d(u∗) 6= d(u) then

Ũ ←− Ũ ∪ {u};
break;

end
end

end

ξDS(u∗)←− 1− card(Ũ)
card(U)

;

tion shows how to compute a consistency fac-
tor for a given episode using Algorithms 1 and
2 presented in Section 4.

Example 5.1 Let us consider a multistage
decision transition system MDTS from Ex-
ample 3.1. Suppose we are given a new
episode (multistage transition) presented in
Table 5. We are going to determine a degree
of the possibility of appearance of this episode

in our system.

Table 5: A new episode.
UT /A

1 ∪A2 ∪A3 u1 e1 u2 e2 u3 e3

t∗ -1 -1 -1 0 1 1

The sets P d
u for the first elementary decision

transition subsystem DTS(1, 2) = (UT , A
1 ∪

A2) of MDTS are presented in Table 6
whereas the sets P d

u for the second elementary
decision transition subsystem DTS(2, 3) =
(UT , A

2 ∪A3) of MDTS are presented in Ta-
ble 7.

Table 6: The sets P d
u for the subsystem

DTS(1, 2) = (UT , A
1 ∪A2).

UT /A
1 ∪A2 u1 e1 P u2

u P e2

u

t1 -1 -1 {−1, 1} {−1, 1}
t2 -1 -1 {−1, 1} {−1, 1}
t4 * -1 {−1, 1} {−1, 0, 1}
t5 -1 * {−1, 1} {−1, 0, 1}

Table 7: The sets P d
u for the subsystem

DTS(2, 3) = (UT , A
2 ∪A3).

UT /A
2 ∪A3 u2 e2 P u3

u P e3

u

t1 -1 * {−1, 1} {0, 1}
t4 -1 * {−1, 1} {0, 1}
t5 -1 0 {1} {0}

According to Theorem 4.1 we have the episode
t∗ which satisfies all minimal decision rules
true and realizable in the elementary deci-
sion transition subsystem DTS(1, 2) because
for each set P d

u we have that card(P d
u ) ≥ 2.

Hence, ξDTS(1,2)(t∗) = 1, i.e., the episode
t∗ is consistent to the degree 1 (or consis-
tent in short) with the knowledge included in
the elementary decision transition subsystem
DTS(1, 2). In case of the elementary decision
transition subsystem DTS(2, 3), for some sets
P d

u we have that card(P d
u ) = 1 and decision

attribute values are different. So, the episode
t∗ does not satisfy all minimal decision rules
true and realizable in DTS(2, 3). The set Ũ
of episodes from DTS(2, 3) generating rules
not satisfied by t∗ consists of the episode t5.
Therefore, ξDTS(2,3)(t∗) = 0.8. Finally, we
obtain the consistency factor ξMDTS(t∗) of
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the episode t∗ with the knowledge included in
MDTS which is:

ξMDTS(t∗) = ξDTS(1,2)(t
∗)·ξDTS(2,3)(t

∗) = 0.8.

According to our approach we can say that the
episode t∗ is possible to appear to the degree
0.8 with respect to the knowledge included in
the original multistage dynamic information
system MDIS.

6 Conclusions

In this paper, we proposed an efficient method
of computing consistency factors of new
episodes added to multistage decision transi-
tion systems. These factors can be useful to
predicting degrees of possibilities of appearing
in the future episodes in the examined sys-
tems. In our approach, we assumed that all
states appearing in new episodes have only
known values from the original multistage de-
cision transition systems. In the future work,
we will also consider a more general case, i.e.,
when processes of examined systems can have
new states which have not been observed yet.
Another important task for further research is
to propose other ways of knowledge represen-
tation, and what follows, other ways of com-
puting consistency factors. For the sake of a
polynomial time complexity of presented algo-
rithms, the proposed approach can be used in
the case of high dimensional data. Especially,
such data arise in genetics. It is also necessary
to examine our approach on real-life data.
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