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Abstract

Given a subset B of a complete
residuated lattice, what are its
points which are reasonably close
to any point of B? What are the
best such points? In this paper, we
seek to answer these questions pro-
vided closeness is assessed by means
of biresiduum, i.e. the truth func-
tion of equivalence in fuzzy logic. In
addition, we present two algorithms
which output, for a given input set
M of points in a residuated lattice,
another set K which approximates
M to a desired degree. We prove
that the algorithms are optimal in
that the set K is minimal in terms
of the number of its elements. More-
over, we show that the elements of
any set K ′ with such property are
bounded from below and from above
by the elements produced by the two
algorithms.

Keywords: Fuzzy Logic, Approxi-
mation, Residuated Lattice.

1 Motivation and preliminaries

Suppose there is a collection of metal poles
of different lengths with the longest pole hav-
ing (normalized) length 1. Suppose a person
sees a picture of two poles from that collec-
tion and is asked to assess their similarity, i.e.
the person is asked to tell a degree p1 ≈ p2

to which the poles are similar. p1 ≈ p2 = 0

and p1 ≈ p2 = 1 indicate that the poles are
not similar at all and that the poles are in-
distinguishable, respectively. Since the poles
are narrow, the person assesses their similar-
ity based solely on their lengths. The picture
does not show a scale, i.e. the person does
not know the actual lengths of the poles. An
obvious way to asses the similarity s of poles
p1 and p2 of lengths l(p1) and l(p2) is to put

p1 ≈ p2 = min
(

l(p1)
l(p2)

,
l(p2)
l(p1)

)
, (1)

i.e. to make the similarity judgment based
on the ratio of the lengths. Namely, the ra-
tio does not depend on the actual lengths, i.e.
p1 ≈ p2 = min

(
c·l(p1)
c·l(p2) ,

c·l(p2)
c·l(p1)

)
for any c > 0,

so it can be assessed even when the person
does not know the actual magnification coef-
ficient c > 0, i.e. does not know the scale
for the picture. Given poles p1 and p2 with
lengths l(p1) and l(p2), what is the length of
the pole in the middle? That is, what is the
length of the “central pole” p for which

p ≈ p1 = p ≈ p2,

i.e. for which the similarity to p1 equals the
similarity to p2? An easy verification shows
that the central pole p has length

l(p) =
√

l(p1) ·
√

l(p2). (2)

Suppose now the person knows the scale, i.e.
knows the lengths l(p1) and l(p2). Then there
is another, perhaps more natural, way to as-
sess the similarity. Namely, one can put

p1 ≈ p2 = 1− |l(p1)− l(p2)|, (3)
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i.e. the similarity is proportional to the dis-
tance of the normalized lengths of p1 and
p2. If such measure of similarity is used, the
length of the central pole p is

l(p) =
l(p1) + l(p2)

2
. (4)

Obviously, given a set B = {p1, . . . , pn} of
poles, the length of the optimal central pole
for B is

l(p) =
√

min
i

l(pi) ·
√

max
i

l(pi)

for similarity given by (1) and

l(p) =
mini l(pi) + maxi l(pi)

2
.

for similarity given by (3).

In this paper, we present theorems and algo-
rithms motivated by the above types of prob-
lems. The first hint to a general framework
for this kind of problems is the observation
that in (1),

p1 ≈ p2 = l(p1)↔ l(p2) (5)

with ↔ being the biresiduum corresponding
to product t-norm and that in (2),

l(p) = m⊗
√

l(p1)↔ l(p2) (6)

with m = min{l(p1), l(p2)}, ⊗ denoting the
product t-norm and √ denoting its square
root [4]. Likewise, (5) and (6) become (3)
and (4) if ↔ and ⊗ denote the  Lukasiewicz
biresiduum and t-norm. Henceforth, we
consider the framework of left-continuous t-
norms and their residua. In fact, we consider
a more general framework of complete residu-
ated lattices [6]. Recall that a complete resid-
uated lattice is an algebra L = 〈L,∧,∨,⊗,→
, 0, 1〉 such that 〈L,∧,∨, 0, 1〉 is a complete lat-
tice, 〈L,⊗, 1〉 is a commutative monoid, and
⊗ and → satisfy so-called adjointness condi-
tion, i.e. a ⊗ b ≤ c if and only if a ≤ b → c.
Residuated lattices are the main structures of
truth degrees used in fuzzy logic [2, 3]. We
assume familiarity with examples and basic
properties of residuated lattices.

Furthermore, we assume familiarity with ba-
sic concepts from tolerance and equivalence

relations. Recall that a tolerance relation T
on a set U is a reflexive and symmetric rela-
tion on U . An equivalence on U is a toler-
ance which is, moreover, transitive. A block
of a tolerance T is a subset B of U for which
B × B ⊆ T , i.e. u T v for every u, v ∈ B. A
maximal block of T is a block B of T which
is maximal with respect to set inclusion, i.e.
such that if B ⊂ B′ then B′ × B′ 6⊆ T . A
collection of maximal tolerance blocks of T
is denoted by U/T . U/T forms a covering
of U , i.e. every maximal block is nonempty
and the union of all blocks yields U . A class
of a tolerance T given by u ∈ U is the set
[u]T = {v ∈ U |u T v}. If T is an equivalence
relation, then maximal blocks of T as well as
classes of T are just equivalence classes of T .

Given a complete residuated lattice L, denote
by ≈e the tolerance on L defined by

a ≈e b iff a↔ b ≥ e

and put

ae = e⊗ a,

ae = e→ a,

[a]e = [ae, (ae)e].

Note that [p, q] denotes the interval {x ∈
L | p ≤ x ≤ q} ⊆ L. It can be easily verified
that ≈e a compatible tolerance relation on the
complete lattice 〈L,≤〉. As a result, the fol-
lowing theorem follows directly from [7]:

Theorem 1 The factor set L/≈e is equal to
the set {[a]e | a ∈ L}.

2 Maximal blocks and central sets

Let B ⊆ L be a set. We set

Ce(B) =
= {c ∈ L | for b ∈ B, c↔ b ≥ e} . (7)

Ce(B) is called the e-central set of B (or sim-
ply a central set of B), its elements are called
e-central points of B (or simply central points
of B).

Lemma 1 c ∈ Ce(B) iff (c→ ∧
B)∧(

∨
B →

c) ≥ e.

Proceedings of IPMU’08 95



Proof. Follows easily from c → (
∧

b∈B b) =∧
b∈B(c → b) and (

∨
b∈B b) → c =

∧
b∈B(b →

c). �

The following theorem shows how to compute
the central set Ce(B) of a subset B ⊆ L.

Theorem 2 For any B ⊆ L, Ce(B) is equal
to [e⊗∨

B, e→ ∧
B].

Proof. By adjointness, e ≤ c→ ∧
B is equiv-

alent to c ≤ e → ∧
B and e ≤ ∨

B → c is
equivalent to e⊗∨

B ≤ c. Thus the assertion
follows from Lemma 1. �

For c ∈ L set

Be(c) = {b ∈ L | c↔ b ≥ e}. (8)

Be(c) is called the closed ball with center c
and radius e. Since c ∈ Be(c), Be(c) is always
nonempty. A closed ball Be(c) is called max-
imal if there is no c̄ 6= c such that Be(c) ⊂
Be(c̄).

Note that a closed ball Be(c) is exactly the
class of tolerance ≈e determined by c.

Example 1 In the  Lukasiewicz structure,
Be(c) is just the interval [c−(1−e), c+(1−e)]∩
[0, 1]. Hence the closed ball B0.5(0) = [0, 0.5]
is not maximal: B0.5(0) ⊂ B0.5(0.5) = [0, 1].

The following result is a simple consequence
of the above definitions. Note, however, that
it does not say that the central set Ce(B) is
not empty.

Lemma 2 For any subset B ⊆ L and c ∈
Ce(B) it holds B ⊆ Be(c).

Proof. Let b ∈ B. Using (7), we get c ↔ b ≥
e, and from (8), we get b ∈ Be(c). �

The following theorem provides an easy way
to compute any closed ball with given center
and radius.

Theorem 3 For any c ∈ L, the closed ball
Be(c) is equal to the interval [e⊗ c, e→ c].

Proof. The condition b ↔ c ≥ e from the
definition of closed ball has two parts: b →

c ≥ e and c→ b ≥ e. By adjointness, the first
part is equivalent to b ≤ e→ c, the second to
b ≥ e⊗ c. �

Corollary 1 For any c ∈ L, c ∈ Ce(Be(c)).

Proof. From Theorem 2 and Theorem 3 we
obtain Ce(Be(c)) = [e⊗ (e → c), e → (e⊗ c)]
and from adjointness, e⊗ (e → c) ≤ c ≤ e →
(e⊗ c). �

Now we turn our attention to the relationship
between closed balls with radius e and blocks
of the tolerance ≈e2 (where e2 = e ⊗ e) and
show that maximal closed balls with radius
e coincide with maximal blocks of this toler-
ance.

Lemma 3 For any c ∈ L, Be(c) is a block of
≈e2.

Proof. From Theorem 3, e⊗ c and e→ c are
the least and the greatest elements of Be(c),
respectively. From Theorem 1, the element
e⊗ e⊗ (e→ c) is the least element of a max-
imal block of ≈e2 containing e → c. Since
e⊗ e⊗ (e→ c) ≤ e⊗ c, Be(c) is contained in
this maximal block, which proves the lemma.
�

Lemma 4 For any subset B ⊆ L, the central
set Ce(B) is nonempty if and only if B is a
block of the tolerance ≈e2.

Proof. According to Theorem 2, the non-
emptiness of Ce(B) is equivalent to the condi-
tion e⊗∨

B ≤ e→ ∧
B, which is, according

to adjointness, equivalent to e ⊗ e ≤ ∨
B →∧

B which is equivalent to the fact that B is
a block of ≈e2 . �

Now we put together results of the previous
lemmas.

Theorem 4 Every maximal closed ball Be(c)
is a maximal block of ≈e2. Conversely, if
B ⊆ L is a maximal block of ≈e2 then the
central set Ce(B) is nonempty and for any
c ∈ Ce(B) the closed ball Be(c) is maximal
and equal to B.
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Proof. According to Lemma 3, a maximal ball
Be(c) is a block of ≈e2 . It is therefore con-
tained in a maximal block B. From Lemma
4 it follows that this maximal block has at
least one central point c′ ∈ B. Now, Lemma
2 says that the closed ball Be(c′) contains
B. Put together, these considerations give
Be(c) ⊆ B ⊆ Be(c′) and from the maximality
of Be(c) we obtain Be(c) = B.

To prove the converse, we first use Lemma 4
again to obtain Ce(B) 6= ∅. Now, any closed
ball containing Be(c) should be equal to B,
because it is a block of ≈e2 itself (Lemma 3).
Any other closed ball containing Be(c) should
be also equal to it by the same reason (Lemma
3). �

3 Optimal central points

So far, we investigated maximal sets which
have nonempty sets of e-central points. Now
we turn to another problem: find a maximal e
such that the set of e-central points of a given
set is nonempty.

We say that e is an admissible radius of set
B if Ce(B) 6= ∅. From Lemma 2 it follows
that if e is an admissible radius of B, then
B ⊆ Be(c) for any c ∈ Ce(B). Lemma 1 says
that for any such c,

e ≤ (c→ ∧
B) ∧ (

∨
B → c). (9)

An optimal central point for B ⊆ L is an ele-
ment c ∈ L such that for every m:∧

z∈B(z ↔ m) ≤ ∧
z∈B(z ↔ c).

Since for any m we have
∧

z∈B(z ↔ m) =
(m → ∧

B) ∧ (
∨

B → m) (see, for example,
the proof of Lemma 1), c is an optimal central
point iff for every m:

(m→ ∧
B) ∧ (

∨
B → m) ≤

(c→ ∧
B) ∧ (

∨
B → c) (10)

Theorem 5 1. For any optimal central point
c of B, e = (c → ∧

B) ∧ (
∨

B → c) is the
largest admissible radius of B.

2. If e is the largest admissible radius of B
then the set of optimal central points of B is
nonempty and is equal to Ce(B).

Proof. 1. By Lemma 1, c ∈ Ce(B), which
also means that e is an admissible radius of
B. Now the assertion follows from (9) and
(10).

2. The fact that Ce(B) is nonempty follows
directly from definition of admissible radius.
Now, for any m, (m → ∧

B) ∧ (
∨

B → m)
is an admissible radius, hence it is less than
or equal to e. On the other hand, for any
c ∈ Ce(B) we have B ⊆ Be(c), which means
(c → ∧

B) ∧ (
∨

B → c) ≥ e. Put together,
(10) is satisfied for any m ∈ L, c ∈ Ce(B). �

Lemma 5 Let d =
∧

B → ∨
B. Then

1. e is an admissible radius of B iff e⊗e ≤ d.

2. For any z ∈ L, e = z ∧ (z → d) is an
admissible radius of B.

3. e is an admissible radius of B iff e = e ∧
(e→ d).

Proof. 1. e⊗ e ≤ d if and only if B is a block
of ≈e2 , which is equivalent to the requirement
that B is a subset of some closed ball Be(c)
(Theorem 4). Hence, c is an e-central point
of B.

2. We have e⊗ e = (z ∧ (z → d))⊗ (z ∧ (z →
d)) ≤ z ⊗ (z → d) ≤ d and the result follows
from 1.

3. From 1. and adjointness we obtain that e
is an admissible radius of B iff e ≤ e → d,
which is equivalent to e = e ∧ (e→ d). �

Corollary 2 The set

{z ∧ (z → (
∧

B → ∨
B)) | z ∈ L} (11)

is the set of all admissible radii of B.

Proof. Follows from Lemma 5, parts 2. and
3. �

Theorem 6 (optimal central points) Set
B has optimal central points if and only if the
set P from Corollary 2 has a largest element.
This element is equal to the corresponding
largest admissible radius e.

Proof. Follows directly from Corollary 2 and
Theorem 5. �
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Now we derive a simple consequence of the
previous results for the case of residuated lat-
tices with square roots. We will use the con-
cept of a square root introduced by Höhle [4].
A complete residuated lattice L has square
roots if there is a function √ : L→ L satisfy-
ing

√
a⊗√a = a, (12)

b⊗ b ≤ a implies b ≤ √a, (13)

for every a, b ∈ L.

Remark 1  Lukasiewicz, product, and Gödel
algebras on [0, 1] have sqaure roots. They are
given by

√
a =

a + 1
2

for  Lukasiewicz,
√

a = ordinary number-theoretic square
root of a for product,√

a = a for Gödel.

Theorem 7 If L has square roots then any
subset B ⊆ L has optimal central points. For
the corresponding largest admissible radius e
it holds

e =
√∧

B → ∨
B. (14)

Proof. According to Lemma 5, part 1. and
(12), e is the largest admissible radius of B.
The rest follows from Theorem 5, part 1. �

4 Optimal algorithms for
approximating sets of truth
degrees

We now consider the following type of prob-
lems. Given a set M of truth degrees, find a
reasonably small set K of truth degrees which
approximates M well. We provide a precise
statement below. Due to limited scope, we
omit proofs in this section.

Note first that such problem naturally arises
in the following scenario: Let A : U → L be a
fuzzy set in universe U with M = {A(u) |u ∈
U} being the set of truth degrees “used by
A”. Find a fuzzy set B : U → L which ap-
proximates A well and for which, in addition,
the set K = {B(u) |u ∈ U} of truth degrees

“used by B” is small. In general terms, the
advantage of B over A is its simplicity. As
an example, B is easier to interpret. Due to
the well-known Miller’s 7±2 phenomenon [5],
people have difficulty to assign and interpret
consistently more than 7± 2 values of a given
variable. So if A represents degrees to which
objects (such as products) meet certain cri-
teria, it might be better to present B as an
output instead of A.

We consider the following general definition.

A degree appr(M,K) to which M ⊆ L is ap-
proximated by K ⊆ L is defined by

appr(M,K) =
∧

a∈M

∨
b∈K(a↔ b). (15)

appr(M,K) can be seen as a truth degree of
“for every a ∈ M there is b ∈ K such that a
and b are similar (close)”. Hence, appr(M,K)
can be understood as a natural degree of ap-
proximation. Among the basic properties of
appr(·, ·) are

1. appr(M,K) = 1 for M ⊆ K,

2. K1 ⊆ K2 implies
appr(M,K1) ≤ appr(M,K2).

We now present two problems.

Problem 1 Given (finite) M ⊆ L and a thresh-
old e ∈ L, find (finite) K such that

1. K approximates M to degree at least e,
i.e.

appr(M,K) ≥ e, (16)

2. there is no K ′ with |K ′| ≤ |K| for which
appr(M,K ′) > e, i.e. K is a least set in
terms of the number of its elements which
satisfies (16).

Problem 2 Given (finite) M ⊆ L and a thresh-
old e ∈ L, find (finite) K satisfying 1. and 2.
of Problem 1, and

3. For any K ′ with |K ′| = |K|,
appr(M,K) ≥ appr(M,K ′), (17)

i.e. among the sets with |K| elements, K
provides the best approximation of M .
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In the rest of this section, we assume that
the complete residuated lattice L is linearly
ordered, i.e. a ≤ b or b ≤ a for every a, b ∈
L. The following theorem provides a universal
description of sets K satisfying (16).

Theorem 8 Let L be linearly ordered. 1. Let
Ω ⊆ 2L be a covering of M and ϕ : Ω → L a
mapping such that for any B ∈ Ω, ϕ(B) ∈
Ce(B). Then Ω consists of blocks of the toler-
ance ≈e2 and for K = ϕ(Ω), (16) is satisfied.

2. If K ⊆ L satisfies (16) then Ω =
{Be(c) | c ∈ K} ⊆ 2L is a set of blocks of the
tolerance ≈e2 which forms a covering of M .
Moreover ϕ : Ω → L defined by ϕ(Be(c)) = c
satisfies ϕ(B) ∈ Ce(B).

Proof. Omitted due to lack of space. �

According to Theorem 2, Ce(B) is equal to
[e ⊗ ∨

B, e → ∧
B]. Hence, we can con-

struct a mapping ϕ from the first part of the
above theorem by setting ϕ(B) to any ele-
ment of this interval (which is nonempty ac-
cording to Lemma 4). Obviously, in order for
K to provide a good approximation degree
appr(M,K), the best choice is to let ϕ(B) be
an optimal central point of B.

Example 2 Let L = [0, 1]2 with  Lukasiewicz
structure, M = L, e = 〈0.25, 0.25〉. Then

K = {〈0, 0〉, 〈0.5, 0〉, 〈1, 0〉, 〈0, 0.5〉, 〈0, 1〉}

satisfies (16). However, for a = 〈1, 1〉, we have∨
b∈K a ↔ b = 〈1, 1〉, but Be(a) ∩ K = ∅ for

there is no b ∈ K such that a↔ b ≥ e. There-
fore, assertion 2. from Theorem 8 does not
hold.

We now present two algorithms which provide
solutions to Problem 1. The first algorithm
constructs K by “going up” in the set L of
truth degrees.

Algorithm 1

1: INPUT: M, e
2: OUTPUT: K satisfying 1. and 2.

of Problem 1

3: K ← ∅

4: while M is not empty do
5: min ← min(M)
6: add e→ min to K
7: remove from M every

element ≤ (e⊗ e)→ min

8: endwhile
9: return K

The second algorithm constructs K by “going
down”.

Algorithm 2

1: INPUT: M, e
2: OUTPUT: K satisfying 1. and 2.

of Problem 1

3: K ← ∅
4: while M is not empty do
5: max ← max(M)
6: add e⊗ max to K
7: remove from M every

element ≥ e⊗ e⊗ max

8: endwhile
9: return K

As the next theorem shows, the algorithms
stop and are correct, i.e. they produce a set
K of minimal size for which appr(M,K) ≥ e.

Theorem 9 (termination, correctness)
1. Algorithms 1 and 2 terminate after at
most |M | steps. 2. Algorithms 1 and 2 are
correct.

Proof. Omitted due to lack of space. �

Note that Algorithms 1 and 2 work concep-
tually even for infinite sets M when replacing
inf(M) by min(M) and sup(M) by max(M)
in line 5.

Futhermore, the algorithms provide upper
and lower bound for every set K ′ with the
minimal number of elements which approxi-
mate M to degree at least e.

Theorem 10 (bounds) Let the sets Ku and
K l produced by Algorithm 1 and Algorithm 2
consist of elements ku

1 < · · · < ku
m and kl

1 <
· · · < kl

m, respectively. If K ′ consisting of
k′

1 < · · · < k′
m satisfies appr(M,K ′) ≥ e, then

kl
1 ≤ k′

1 ≤ ku
1 , . . . , kl

m ≤ k′
m ≤ ku

m.
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Proof. Omitted due to lack of space. �

The following example shows that not every
K ′ = {k′

1, . . . , k
′
m} for which kl

i ≤ k′
i ≤ ku

i

satisfies appr(M,K ′) ≥ e.

Example 3 Consider standard  Lukasiewicz
structure on L = [0, 1], M = {0.5, 0.7, 0.8},
and e = 0.9. Then K l = {0.4, 0.7} and
Ku = {0.6, 0.9}. Let K ′ = {0.4, 0.9}. Then
appr(M,K ′) = 0.8 < 0.9 = e.

Although the set K produced by Algorithm
1 or Algorithm 2 is optimal in that it is one
of the smallest sets for which appr(M,K) ≥
e, there can be a set K ′ of the same size,
i.e. |K ′| = |K|, for which appr(M,K ′) >
appr(M,K), i.e. K ′ provides a better approx-
imation of M than K. From this point of
view, the output set K from Algorithm 1 and
Algorithm 2 can be improved. Namely, it is
easily seen from the description of Algorithm
1 and Algorithm 2 that the set

{Be(k) ∩M | k ∈ K}

forms a partition of M , i.e. sets Be(k)∩M for
k ∈ K are pairwise disjoint and their union
is M . Now, in general, k is not an optimal
central point of Be(k) ∩ M . Therefore, we
can improve K by replacing every k ∈ K by
an optimal central point of Be(k) ∩M (or a
point which provides a better apprximation of
Be(k) ∩M than k). By Theorem 7, if L has
square roots, then any element from[√∧

(Be(k) ∩M)⊗∨
(Be(k) ∩M),√∧

(Be(k) ∩M)→ ∧
(Be(k) ∩M)

]
can be used to replace k. For instance, for
M = {0.5, 0.7, 0.8} and K = K l = {0.4, 0.7}
from Example 3, B0.9(0.7) ∩M = {0.7, 0.8}
and B0.9(0.4) ∩M = {0.5}. Hence, 0.4 can
be replaced by 0.5 (optimal central point of
{0.5}) and 0.7 can be replaced by 0.75 (op-
timal central point of {0.7, 0.8}). As a re-
sult, we get a set K ′ = {0.5, 0.75} for which
appr(M,K ′) = 0.95 > 0.9 = appr(M,K), i.e.
K ′ provides a better approximation of M than
K does.

Still, such improvement does not, in general,
satisfy condition 3. of Problem 2. That is,
replacement of points k in K by better points
k′ which cover the same part of M , i.e. for
which Be(k) ∩M = Be(k′) ∩M , does not re-
sult in the best approximating set with size
|K|. An algorithm which provides such set,
i.e. which provides a solution to Problem 3,
is the subject of our future research.
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