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Eĺıas F. Combarro
University of Oviedo (Spain)

elias@aic.uniovi.es

P. Miranda
Complutense University of Madrid (Spain)

pmiranda@mat.ucm.es

Abstract

In this paper we deal with the prob-
lem of studying some mathemati-
cal aspects regarding the polytope
of fuzzy measures when the referen-
tial set is finite. More concretely, we
study whether two extreme points
are adjacent; for general polytopes,
this is a NP-hard problem. However,
for the case of fuzzy measures, we
give a necessary and sufficient condi-
tion for two extreme points to be ad-
jacent. This allows us to prove that
it is possible to find out in polyno-
mial time (in the number of mini-
mal subsets) whether two extremes
are adjacent. These results can be
extended to the polytope given by
the convex hull of monotone boolean
functions.

Keywords: Fuzzy measures, mono-
tone boolean functions, adjacency,
complexity.

1 Introduction and basic concepts

Consider a finite referential set X =
{x1, ..., xn} of n elements. The set X is the
set of criteria in Decision Making, players in
Game Theory, individuals in Welfare Theory,
and so on. Subsets of X are denoted by capi-
tal letters A,B, ... In order to avoid hard no-
tation, for singletons {xi} we will usually omit
braces. The set of subsets of X is denoted by
P(X).

Definition 1. A non-additive measure [8]
or fuzzy measure [25] or capacity [4] over
X is a function µ : P(X) → [0, 1] satisfying

1. µ(∅) = 0 and µ(X) = 1.

2. If A ⊆ B then µ(A) ≤ µ(B).

From a mathematical point of view, fuzzy
measures constitute a generalization of prob-
ability distributions and additive weights in
which we remove additivity and monotonic-
ity is imposed instead. This extension is per-
fectly justified in many practical situations,
in which additivity is too restrictive. Fuzzy
measures have been applied to many fields, as
Decision Making under Risk and Uncertainty
[2, 24], Multicriteria Decision Making [13, 14],
pseudo-boolean functions [16], etc. This ver-
satility of fuzzy measures has led to a huge
number of related works, both from a theo-
retical and from a practical point of view.

We will denote the set of all fuzzy measures
over X by FM(X). Notice that FM(X) is
a polytope in R2n−2 (or R2n

if we include the
coordinates for µ(∅) and µ(X)).

On FM(X) we can define a partial order
given by µ1 ≤ µ2 if and only if µ1(A) ≤
µ2(A), ∀A ⊆ X. If µ1 ≤ µ2 or µ2 ≤ µ1 we
say that µ1 and µ2 are comparable.

On FM(X) we can also define the following
operations:

• The supremum (µ1 ∨ µ2)(A) :=
max(µ1(A), µ2(A)), ∀A ⊆ X.

• The infimum (µ1 ∧ µ2)(A) :=
min(µ1(A), µ2(A)), ∀A ⊆ X.
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Note that we need 2n − 2 coefficients in or-
der to define a fuzzy measure. Then, ad-
ditional constraints are introduced in order
to reduce the complexity. This has led to
several subfamilies of fuzzy measures, as p-
symmetric measures, k-intolerant measures,
λ-measures and so on. One of the most im-
portant families of fuzzy measures is the fam-
ily of k-additive measures. The concept of k-
additivity is based on the Möbius transform.

Definition 2. [23] Let µ be a set function
(not necessarily a fuzzy measure) on X. The
Möbius transform (or inverse) of µ is an-
other set function on X defined by

m(A) :=
∑
B⊆A

(−1)|A\B|µ(B), ∀A ⊆ X.

The Möbius transform given, the original set
function can be recovered through the Zeta
transform [3]:

µ(A) =
∑
B⊆A

m(B).

The Möbius transform represents the impor-
tance that a subset can attain on its own,
without considering its different parts.

Definition 3. [12] A fuzzy measure µ is said
to be k-additive if its Möbius transform van-
ishes for any A ⊆ X such that |A| > k and
there exists at least one subset A of exactly k
elements such that m(A) 6= 0.

These measures constitute a bridge between
probabilities and general fuzzy measures. We
will denote by FMk(X) the polytope of
all fuzzy measures on X being at most k-
additive.

A problem arising in practice is the identifi-
cation of the fuzzy measure modelling a cer-
tain situation. In [5], we have dealt with
the problem of identifying a fuzzy measure
from sample information through genetic al-
gorithms [11]. The cross-over operator used
in the algorithm was the convex combination,
possible as FM(X) is a polytope; this oper-
ator allows a reduction in the complexity of
the algorithm. However, the use of this oper-
ator has the drawback that the search region

is reduced in each iteration. Then, in order to
ensure that the searched measure is inside the
region, we need to consider the extreme points
of FM(X) as the initial population. It has
been pointed out in [21] that these extreme
points are the set of {0, 1}-valued measures,
i.e. the set of monotone boolean functions of n
variables except the constant functions 0 and
1.

In a previous paper [19], we have proved
that, unexpectedly, there are vertices of
FMk(X), k > 2 that are not {0, 1}-valued
measures. These vertices are convex combina-
tions of {0, 1}-valued measures that determine
a r-dimensional facet of FM(X). Therefore,
it seems interesting to study the adjacency in
FM(X).

Remark that for a {0, 1}-valued measure µ,
there are some subsets A satisfying the fol-
lowing conditions:

µ(A) = 1,
µ(B) = 1, ∀B ⊇ A,
µ(C) = 0, ∀C ⊂ A.

We will call any subset satisfying these condi-
tions a minimal subset for µ. The set of min-
imal subsets also forms the qualitative Möbius
transform [15]. Note that a {0, 1}-valued mea-
sure is completely defined by its minimal sub-
sets. To see this, it suffices to remark that
µ(A) = 1 if A contains a minimal subset and
µ(A) = 0 otherwise. We will denote the fam-
ilies of minimal subsets by C,D, and so on.
The fuzzy measure whose minimal subsets are
the family C will be denoted by µC.

An example of fuzzy measure that we will use
later is the one in which there is only a min-
imal subset A ⊆ X, A 6= ∅. This measure is
given by

uA(B) :=
{

1 if A ⊆ B
0 otherwise

These fuzzy measures are the vertices of a spe-
cial convex class of fuzzy measures called be-
lief functions, that appear in the Theory of
Evidence [7]. For ∅, we define the fuzzy mea-
sure u∅ by

u∅(B) :=
{

1 if B 6= ∅
0 if B = ∅

72 Proceedings of IPMU’08



Note that u∅ follows a different structure to
any other uA (indeed it is not a belief func-
tion).

The set of minimal subsets of a {0, 1}-valued
measure determine an antichain (collections
of sets which are pairwise uncomparable with
respect to inclusion, see [1]). Then, the num-
ber of vertices of the polytope FM(X) is the
number of different antichains on X. The
number of antichains of a set of cardinality
n is known as the n-th Dedekind number [6].
The first Dedekind numbers are given in Ta-
ble 1.

Table 1: Number of vertices of FM(X)
n Dedekind numbers
1 1
2 4
3 18
4 166
5 7579
6 7828352
7 2414682040996
8 56130437228687557907786

In the values given in this table we have ex-
cluded the empty antichain and the antichain
which contains only the empty set, as these
cases do not lead to a fuzzy measure (they
do not satisfy the boundary conditions). The
form of the general term of this sequence is
not known and, in fact, only few of them have
been calculated up today. However, their val-
ues are bounded:

Theorem 1. [9] If Dn is the n-th Dedekind
number and En := Dn + 2, then it holds

2q ≤ Dn, En ≤ 3q,

with q =
(

n
bn

2
c
)

and bxc the integer part of x,
for all n ≥ 1.

The paper is organized as follows: In next
section we study when two extreme points of
FM(X) are adjacent. Then, in Section 3 we
show that we can find out whether two ver-
tices are adjacent in polynomial time. These
properties could be interesting in the prob-
lem of identification of fuzzy measures. More-
over, they might shed light on the structure

of FM(X). We also prove that these results
can be extended to the convex hull of mono-
tone boolean functions. We finish with the
conclusions and open problems.

2 Adjacency on FM(X)

Let us address the problem of whether two
{0, 1}-valued measures are adjacent. Remark
that two vertices of a polytope are adjacent
if the middle point of the segment joining
them cannot be written as a convex combi-
nation of other vertices of the polytope. In
this case, the segment is, in fact, an edge of
the polytope. Consider a polytope of the form
{A~x ≤ ~b} where ~x ∈ Rp and suppose there are
not dummy constraints. Given two vertices
~x, ~y, let us denote by B the submatrix of A
consisting in the constraints that any point ~z
in the segment joining ~x, ~y excluded ~x and ~y
satisfies with equality; then, it is well-known
that ~x, ~y are adjacent if the rank of B is p−1.

In the case of FM(X), these constraints are

µ(∅) = 0, µ(X) = 1.

µ(A)− µ(A\xi) ≥ 0 ∀A ⊆ X,xi ∈ A (1)

Then, we have 2 equalities and n2n−1 inequal-
ities. Thus, given two vertices µ1, µ2, they are
adjacent if the range of the constraints in Eq.
(1) that 1

2µ1 + 1
2µ2 satisfies with equality is

2n − 3 (or 2n − 1 if we include the boundary
conditions). Note that the constraints that
1
2µ1 + 1

2µ2 satisfies with equality are exactly
the constraints that both µ1 and µ2 satisfy
with equality. This provides us with an algo-
rithm to determine whether two vertices are
adjacent. However, it is very slow. Indeed, it
can be proved that the complexity can grow
in a non-polynomial way.

As proved in [17, 20], the problem of deter-
mining non-adjacency of vertices of a poly-
tope is, in some cases, NP-complete (see [10]
for a definition of NP-complete problems and
related notions). However, in this section we
give a necessary and sufficient condition of
adjacency on FM(X) which can be used to
prove that the problem of determining adja-
cency can be solved, in this case, in polyno-

Proceedings of IPMU’08 73



mial time in the number of minimal subsets
of the vertices (see Theorem 5 below).

Notice that for general boolean functions (not
necessarily monotone), the problem of adja-
cency is easy to solve: It can be proved that
two boolean functions are adjacent if and only
if their Hamming distance (the number of in-
puts on which they differ) is 1.

Definition 4. Given a polytope F , the graph
of F is defined by the graph whose nodes are
the vertices of F and whose edges join two
nodes if and only if they are adjacent.

It can be seen that the Hamming distance be-
tween two boolean functions is equal to the
length of the shortest path between them in
the graph of adjacency. In particular, if the
distance of two monotone boolean functions is
1, then they are adjacent. However, the con-
verse is not true; for instance, ux1 ∧ ux2 and
ux1 are adjacent as monotone boolean func-
tions although their distance is greater than 1
when n > 2 (they differ, at least, in {x1} and
in {x1, x3}). In fact, we will show below that
ux1 ∨ ux2 ∨ . . .∨ uxn and ux1 ∧ ux2 ∧ . . .∧ uxn

are adjacent when n > 2 (see Theorem 2),
although, as proved in [18], their distance is
the maximum possible distance between two
extremes of fuzzy measures.

The following result is obvious.

Lemma 1. For µ1, µ2 ∈ FM(X), µ1∧µ2 and
µ1 ∨ µ2 satisfy

1
2
(µ1 + µ2) =

1
2
((µ1 ∧ µ2) + (µ1 ∨ µ2))

and µ1 ∧ µ2 ≤ µ1, µ2 ≤ µ1 ∨ µ2.

Corollary 1. If µ1 and µ2 are adjacent ver-
tices of FM(X), then µ1 < µ2 or µ2 < µ1.

Proof: Suppose µ1 and µ2 are not compa-
rable. Then, µ1 ∧ µ2 6= µ1, µ2 and the same
holds for µ1 ∨ µ2. By Lemma 1, this implies
that µ1 and µ2 are not adjacent.

However, this is not a sufficient condition. For
instance, assume |X| ≥ 2 and consider µ =
u{xi,xj} and µ′ defined by

µ′(A) :=
{

1 if xi ∈ A or xj ∈ A
0 otherwise

Then, µ < µ′ but they are not adjacent as

1
2
(u{xi,xj} + µ′) =

1
2
(uxi + uxj ).

In fact, if two vertices µ1 and µ2 are not
comparable, it follows from Lemma 1 that
their supremum and infimum are not adja-
cent, though they are always comparable.

In next definition we introduce the concept of
C-decomposability, that will be needed in the
following results.

Definition 5. Let C and D be two collections
of minimal sets (antichains). We say that D
is C−decomposable if there exists a parti-
tion of D in two non-empty subsets A and B
such that A 6⊆ C and B 6⊆ C, and if A ∈ A
and B ∈ B, then there exists C ∈ C such that
C ⊆ A ∪B.

The idea of C-decomposability is the follow-
ing: consider two fuzzy measures µC and µD

such that µD > µC. If D is C-decomposable,
then it is possible to obtain two other an-
tichains A and B from which, together with a
partition of C, we can derive two fuzzy mea-
sures µ1 and µ2 satisfying

1
2
(µD + µC) =

1
2
(µ1 + µ2).

This result is stated in the next result, whose
proof is rather technical.

Theorem 2. Let µD, µC be two vertices of
FM(X) such that µD > µC. Then, µD and
µC are adjacent vertices of FM(X) if and
only if D is not C-decomposable.

Let us give two examples of how this result
can be applied:

Example 1. For ∅ 6= A,B ⊆ X, consider the
corresponding unanimity games uA and uB.
As an application of Theorem 2, we conclude
that uA and uB are adjacent in FM(X) if and
only if A ⊂ B or B ⊂ A. From Corollary 1 it
follows that A ⊂ B or B ⊂ A is a necessary
condition. Also, the collection of minimal sets
of these unanimity games consists only of one
set, so no decomposition is possible and from
Theorem 2 it follows that the condition is also
sufficient. Notice, however, that the result is
not necessarily true if one of the sets A or
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B is empty, since the minimal sets of u∅ are
{{x1}, . . . , {xn}}.
Moreover, if µ is a vertex of FM(X) satisfy-
ing that µ < uA (A 6= ∅) then µ and uA are
adjacent.
Example 2. If |X| > 2 then u∅ and uX

are adjacent since the minimal sets of u∅ are
{{x1}, . . . , {xn}} and they cannot be {X}-
decomposed when |X| > 2. However, when
|X| = 2 we have

1
2
(uX + u∅) =

1
2
(ux1 + ux2)

and then u∅ and uX are not adjacent.

Notice, however, that u∅ ≥ µ ≥ uX , ∀µ ∈
FM(X). Thus, d(u∅, uX) is maximal in
FM(X).

This last example is generalized in the follow-
ing Proposition in order to cover the cases not
considered in Example 1.
Proposition 1. If E 6= ∅ then uE and u∅
are not adjacent if and only if |X| = 2 and
E = X.

Figure 1 (which has been drawn with the help
of the Pigale computer program1) depicts the
adjacency graph for |X| = 3. We represent
each vertex by means of its minimal sets.
Also, we use i instead of xi. Thus, {1, 2}, {3}
stands for (ux1 ∧ ux2) ∨ ux3 , and so on.

Figure 1: Adjacency of vertices of FM(X)
for |X| = 3

From the proof of Theorem 2, it is also possi-
ble to derive the following results:

1PIGALE: Public Implementation of a Graph Al-
gorithm Library and Editor, H. de Fraysseix and P.
Ossona de Mendez. http://pigale.sourceforge.net/

Corollary 2. Given two extreme points µ, µ′

of FM(X) that are not adjacent, then there
exist µ1, µ2 other extreme points of FM(X)
such that

1
2
(µ + µ′) =

1
2
(µ1 + µ2).

Of course, if µ, µ′ are not adjacent, then
1
2(µ + µ′) can be written as a convex combi-
nation of other vertices. What is interesting
in this result is that it can be put as a convex
combination of exactly two vertices, both of
them with weight 1

2 .

Corollary 3. Let µ and µ′ be two vertices
of FM(X). Suppose the midpoint between µ
and µ′ can be written as a convex combination
of some vertices of FM(X), namely,

1
2
(µ + µ′) =

k∑
i=1

λiµi,

with λi > 0, ∀i = 1, ..., k and
∑k

i=1 λi = 1.
Then, for each i = 1, . . . , k, we have that ei-
ther µi = µ, µi = µ′, or there exists µ′i vertex
of FM(X) such that 1

2(µ + µ′) = 1
2(µi + µ′i).

This result gives a sufficient and necessary
condition for a vertex to appear in a convex
combination which is equal to the midpoint of
a segment. If µ and µ′ are adjacent vertices,
then each µi is either µ or µ′. The second part
of the result only applies when µ and µ′ are
not adjacent. Notice, however, that in this
last case, the measure µ′i is not necessarily
one of the measures µ1, ..., µj as next exam-
ple shows:
Example 3. For |X| = 3, consider

µ = (ux1 ∧ ux2) ∨ (ux1 ∧ ux3) ∨ (ux2 ∧ ux3)

µ′ = ux1 ∧ ux2 ∧ ux3 .

Then,

1
2
(µ + µ′) =

1
4
{[(ux1 ∧ ux2) ∨ (ux1 ∧ ux3)]

+[(ux1 ∧ ux2) ∨ (ux2 ∧ ux3)]+

[(ux1 ∧ux3)∨ (ux2 ∧ux3)]+ (ux1 ∧ux2 ∧ux3)}.
For (ux1 ∧ ux2) ∨ (ux1 ∧ ux3), we obtain that
1
2(µ + µ′) is equal to

1
2
{[(ux1 ∧ ux2) ∨ (ux1 ∧ ux3)] + (ux2 ∧ ux3)}.
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However, when only two vertices µE1 and µE2

are involved in a convex combination which is
equal to the midpoint of other two vertices
µD > µC, then it is always the case that µE1

and µE2 come from a C-decomposition of D
as the following Theorem shows.

Theorem 3. Suppose µD and µC are two ex-
treme points of FM(X) such that µD > µC

and they are not adjacent. Consider µE1 and
µE2 two vertices of FM(X) different from µD

and µC such that 1
2(µD+µC) = 1

2(µE1 +µE2).
Then, A = E1 ∩ D and B = (E2 ∩ D) \ A
form a C-decomposition of D.

When dealing with monotone Boolean func-
tions, it is usual to include the constant func-
tions 0 and 1, which are not fuzzy mea-
sures. For these functions, the following can
be shown:

Lemma 2. The constant functions 0 and 1
are adjacent to any other monotone Boolean
function.

Remark that the collections of minimal sub-
sets for 0 and 1 are respectively ∅ and {∅}.
This allows us to extend Theorem 2 for any
monotone Boolean function.

Corollary 4. Let µD, µC be two vertices of
the set of the convex hull of monotone Boolean
functions such that µD > µC. Then, µD and
µC are adjacent vertices of this polytope if and
only if µD is not C-decomposable.

Similarly, Corollaries 2 and 3 also apply to the
convex hull of monotone Boolean functions.

3 Complexity of determining
adjacency in FM(X)

Let us now study the complexity of determin-
ing whether two {0, 1}-valued measures are
adjacent. Consider two antichains C and D
in X corresponding to the minimal subsets
of two extreme points of FM(X). If these
measures are not comparable, then we already
know that they are not adjacent by Corollary
1. Let us then assume that µC < µD.

Definition 6. Let C and D be two collections
of subsets of X. We associate to them the
graph GC,D whose nodes are the elements of

D \C and such that there is an edge between
A and B if there is no C ∈ C such that C ⊆
A ∪B.
Example 4. Consider |X| = 4 and
D = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)},C =
{(1, 2)}. Then, the associated graph GC,D is
given in Figure 2.

Figure 2: Example of graph GC,D

From this definition, it is easy to prove the
following result.
Theorem 4. Let µC and µD be two vertices
of FM(X) such that µC < µD. Then µC and
µD are adjacent if and only if the graph GC,D

is connected.

Moreover, we can obtain as a consequence of
this result the number of different decompo-
sitions. This gives us the number of different
pairs of vertices µ1, µ2 satisfying

1
2
(µC + µD) =

1
2
(µ1 + µ2).

Corollary 5. Let µC and µD be two vertices
of FM(X) such that µC < µD and they are
not adjacent. If c is the number of connected
components of GC,D and d = |D ∩ C|, then
the number of different C-decompositions of
D is (2c − 2)2d−1.

Finally, from Theorem 4 we can check
whether two vertices are adjacent in polyno-
mial time.
Theorem 5. Let µ and µ′ two vertices of
FM(X). We can check whether they are ad-
jacent in polynomial time in the number of
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minimal subsets of µ plus the number of min-
imal subsets of µ′.

Proof: We can check whether µ < µ′ (or
µ > µ′) in polynomial time in the number of
minimal subsets of the extremes. If they are
not comparable, then they are not adjacent.
Otherwise, we can construct their associated
graph (Definition 6) in polynomial time and
check whether it is connected or not (for in-
stance by breadth-first search, see [22]) also
in polynomial time. The result follows then
from Theorem 4.

As the monotone Boolean functions 0 and 1
are adjacent to any other monotone Boolean
function, the following can be deduced:

Corollary 6. Let µ and µ′ be two vertices
of the convex hull of monotone Boolean func-
tions. We can check whether they are adjacent
in polynomial time in the number of minimal
subsets of µ plus the number of minimal sub-
sets of µ′.

4 Conclusions and open problems

In this paper we have studied some properties
of the polytope FM(X). These results apply
also to the convex hull of monotone Boolean
functions.

We have characterized from a mathematical
point of view whether two vertices of FM(X)
are adjacent. Moreover, we have proved that
given two vertices, it can be computed in poly-
nomial time if they are adjacent. We have
also found all the possibilities of expressing
the sum of two vertices of FM(X) that are
not adjacent as sum of two other vertices.

We think that these results can shed light
on the structure of FM(X) and the convex
hull of monotone Boolean functions. More-
over, these results could be interesting in the
problem of identifying a non-additive mea-
sure. For example, if we consider the identi-
fication through genetic algorithms, we know
that the set of vertices cannot be used as the
initial population [5]. However, it could be
interesting to study the performance of the
algorithm if we consider a subset of vertices

such that two vertices in this initial popula-
tion are not adjacent to each other.

When dealing with fuzzy measures, we are
usually restricted to a subset of FM(X) sat-
isfying an additional property. An interesting
subfamily of non-additive measures are the
so-called k-additive measures, where k varies
in {1, ..., n − 1} [14]. As explained in the in-
troduction, the results obtained in this paper
could help us to study the structure of the
vertices of this family.

It would be also interesting to study the rela-
tionship of the techniques introduced in this
paper to explore the adjacency of vertices
with the usual methods of linear programming
(in [19] we have fruitfully applied linear pro-
gramming tools to derive some results about
the structure of k-additive measures).
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