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Abstract

Accumulation of vague data in a
vague category is studied. Ax-
iomatic definitions of scalar and
fuzzy cardinalities of a granule of
vague data are proposed. Some
approaches to the construction of
scalar and fuzzy cardinalities are
suggested and illustrated with a
sample of vague data.
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1 Introduction

Vague data incorporating non-statistical un-
certainty are often analyzed by methods of
fuzzy sets. We will consider a sample of vague
observations described by fuzzy numbers de-
fined on a closed interval of real numbers. A
crisp or fuzzy partition of this interval will dis-
cretize the sample into a collection of crisp or
fuzzy granules. Because a vague observation
may belong to different granules with differ-
ent degrees of membership, cardinality of each
granule is, in general, non-precise. Work on
accumulation of vague data has already been
initiated by several researchers with the goal
to construct a “fuzzy histogram”. Viertl [12]
suggested a method for the construction of
a histogram from fuzzy quantities distributed
over crisp intervals. His work was generalized
in [2] where the notion of a generalized his-
togram was proposed. In [1], the approxima-
tion of fuzzy quantities by their α-cuts was

used for evaluation of the fuzziness and the
roughness of a generalized histogram. The in-
clusion of α-cuts of fuzzy numbers in a crisp
interval was considered by Viertl and Trutch-
ing [13] as the basis for definitions of the lower
and the upper relative frequencies at level α.
A quasi-continuous histogram was introduced
by Comby and Strauss [4]. In this type of his-
togram, the lower and the upper boundaries
for non-precise counts of vague data were eval-
uated by means of possibility theory.

Cardinality belongs to the most fundamental
characterizations of a set. A measure of cardi-
nality of a fuzzy set can be either a real num-
ber (scalar cardinality) or a fuzzy set defined
over the non-negative integers (fuzzy cardi-
nality). Scalar cardinalities were considered,
e.g., by De Luca and Termini [6], Ralescu
[11] and Dubois and Prade [8]. Fuzzy car-
dinalities were explored, e.g., by Zadeh [18],
Dubois and Prade [8] and Delgado et al [5].
In recent years, more attention has been given
to axiomatization of cardinalities. Wygralak
[14, 15] developed an axiomatic theory of
scalar cardinalities of fuzzy sets with finite
support. Casasnovas and Torrens [3] intro-
duced axiomatization of fuzzy cardinalities of
a finite fuzzy set. Deschrijver and Král’ [7]
proposed an axiomatic theory of cardinalities
of interval-valued fuzzy sets. We suggest ax-
iomatic definitions of scalar and fuzzy cardi-
nalities of granules of vague data. Our work is
organized as follows: Section 2 provides some
basic notions and notations from the theory
of fuzzy sets. Axiomatic definitions of scalar
and fuzzy cardinalities of finite fuzzy sets as
proposed by Wygralak [14, 15] and Casasno-
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vas and Torrens [3] are recalled. In Section 3
we explain the meaning of a granule of vague
data and we illustrate it with a small sam-
ple of non-precise observations. Definitions of
scalar and fuzzy cardinalities of a granule of
vague data are presented in Section 4 and Sec-
tion 5, respectively. Concluding remarks are
in Section 6.

2 Preliminaries

In this paper we will adopt, in general, no-
tations from [14] and [3]. We will use the
standard notation |.| for the cardinality of
a crisp set. Let M be a universal set, fi-
nite or not. A fuzzy set A on M [19] de-
fined by membership function A : M → [0, 1]
is a finite fuzzy set (ffs) if the support of
A, suppA = {x ∈ M : A(x) > 0}, is a
finite subset of M . We will use notation
FFS(M) for the family of all ffs on M , and
notation T for the ffs such that T (x) = 0
for all x ∈ M . For A, B ∈ FFS(M), x ∈
M, we use (A ∪ B)(x) = A(x) ∨ B(x) and
(A∩B)(x) = A(x)∧B(x), where ∨ stands for
the supremum and ∧ for the infimum. The
height of A is h(A) =

∨
x∈M A(x). A fuzzy

singleton is a ffs on M denoted by a/x, such
that: a ∈ [0, 1], x ∈ M and a/x(y) = 0 if
y 6= x. Wygralak [14, 15] proposed an ax-
iomatic definition of a scalar cardinality of a
finite fuzzy set as follows:

Definition 1 A function σ : FFS(M) →
[0,∞) will be called a scalar cardinality if
the following postulates are satisfied for each
a, b ∈ [0, 1], x, y ∈ M and A,B ∈ FFS(M) :
P1. σ(1/x) = 1,
P2. a ≤ b ⇒ σ(a/x) ≤ σ(b/y),
P3. A ∩B = T ⇒ σ(A ∪B) = σ(A) + σ(B).

A fuzzy cardinality of a ffs is expressed by a
generalized natural number (gnn), which is a
fuzzy set on the set of all natural numbers
N . We will use notation CGNN for the set
of convex finite generalized natural numbers.
For α, β ∈ CGNN extended addition [16] is
defined by

(α⊕ β)(k) =
∨
{α(i)∧ β(j) : i + j = k}. (1)

Casasnova and Torrens [3] introduced an ax-
iomatic definition of a fuzzy cardinality of a
finite fuzzy set as follows:

Definition 2 A function γ : FFS(M) →
CGNN is a fuzzy cardinality if and only if
it satisfies the following conditions for each
a, b ∈ [0, 1], x, y ∈ M and A,B ∈ FFS(M):
P1. If A ∩B = T then
γ(A ∪B) = γ(A)⊕ γ(B).
P2. If i > |suppA| and j > |suppB| then
γ(A)(i) = γ(B)(j).
P3. If A is a crisp subset of M , then
γ(A)(i) ∈ {0, 1} for all i ∈ N , and if n =
|suppA|, then γ(A)(n) = 1.
P4. If a ≤ b then γ(a/x)(0) ≥ γ(b/y)(0), and
γ(a/x)(1) ≤ γ(b/y)(1).

Special cases of generalized natural numbers
are FGCounts, FLCounts and FECounts de-
veloped by Zadeh [20]. They are based on the
following idea: For A ∈ FFS(M), t ∈ [0, 1]
and k ∈ N ,

At = {x ∈ M : A(x) ≥ t}, (2)

and

[A]k =
∨
{t ∈ [0, 1] : |At| ≥ k}. (3)

Then FGC(A)(k) = [A]k, FLC(A)(k) = 1−
[A]k+1 and FEC(A) = FGC(A) ∩ FLC(A).
Here “F” stands for “fuzzy”, “L” stands for
“less than or equal to” and “G” and “E” stand
for “greater than or equal to” and “equal to”,
respectively. We will show how scalar and
fuzzy cardinalities of a ffs can help to evaluate
non-precise accumulation of fuzzy numbers in
a fuzzy interval.

3 Granules of vague data

It is generally agreed that vague data can be
modeled by fuzzy intervals [12]. Fuzzy inter-
vals are special fuzzy sets defined on the real
line R. We will denote the family of all fuzzy
intervals by F(R). A membership function of
a fuzzy interval D is a function D : R → [0, 1]
such that for all t ∈ (0, 1] the set Dt given
by (2) is a non-empty crisp interval. A fuzzy
interval with the membership grade equal to
1 for exactly one real number will be called
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in this paper a fuzzy number. Let a, b, c, d
be real numbers such that a ≤ b ≤ c ≤ d.
Then a trapezoidal fuzzy interval D denoted
by quadruple < a, b, c, d > has the member-
ship function

D(x) =


x−a
b−a if a < x < b,

1 if b ≤ x ≤ c,
d−x
d−c if c < x < d,

0 otherwise.

(4)

If b = c then D is a triangular fuzzy number.
Fuzzy set A is a subset of fuzzy set B if
and only if A(x) ≤ B(x) for all x ∈ R.
Cardinality of an infinite fuzzy set A on
R will be evaluated by |A| =

∫
R

A(x) dx, if

the integral exists. If the support of A is a
bounded interval, we will use the notation
||suppA|| for its length.

Assume a sample S of n non-precise observa-
tions described by fuzzy numbers X1, . . . , Xn.
For each i ∈ Nn = {1, . . . , n} the sup-
port of Xi is the interval of real numbers
(ai, bi). Let aS = mini∈Nn ai and bS =
maxi∈Nn bi. Then interval RS = [aS , bS ]
will be called the range of sample S. Let
C = {C1, . . . , Cm} be a partition of RS

into m crisp or fuzzy intervals such that
maxXi∈S ||suppXi|| < minCj∈C ||suppCj || and∑m

j=1 Cj(x) = 1 for all x ∈ RS. The parti-
tion of S due to C can be described by the
family of granules S/D = {S/C1, . . . , S/Cm}.
For each Cj ∈ C, the cardinality of S/Cj can
be interpreted as the “height” of the “ fuzzy
bar” of a fuzzy histogram displaying accumu-
lation of elements from S in class Cj . We will
illustrate granulation of vague data on a small
data set from [1].

Example 1 The variable of interest is water
level X repeatedly measured (observed) in cm
on 12 different locations in a river. From the
repeated measurements on the i-th location,
a triangular fuzzy number Xi =< ai, bi, ci >
was constructed as follows: ai = first quar-
tile, bi = median and ci = third quartile
of the measurements. Non-precise observa-
tions characterized by triangular fuzzy num-
bers are in Table 1. The range of the sam-

ple RS = [65, 175] is divided into vague cat-
egories low water level described by fuzzy in-
terval C1 =< 65, 65, 75, 105 >, medium water
level described by C2 =< 75, 105, 135, 165 >
and high water level described by C3 =<
135, 165, 175, 175 >. For all x ∈ RS we
have that

∑3
j=1 Cj(x) = 1 and therefore C =

{C1, C2, C3} is a fuzzy partition of RS . Sam-
ple S is depicted in Figure 1. Granulation of
S due to C is shown in Figure 2.

Table 1: Numerical representation of sample
S from Example 1

Xi ai bi ci

X1 65 70 75
X2 75 80 85
X3 80 85 95
X4 85 95 105
X5 95 100 105
X6 105 115 125
X7 115 120 130
X8 120 130 135
X9 125 140 145
X10 150 155 160
X11 155 160 170
X12 165 170 175

In the next section we will study how to eval-
uate accumulation of fuzzy numbers from S
in fuzzy intervals from C.

XXXXX3X2XX XXXX1 121110987654

0

0.2

0.4

0.6

0.8

1

60 80 100 120 140 160 180x

Figure 1: Graphical representation of sample
S from Example 1

4 Scalar cardinality

Let D be a fuzzy interval and let S be a family
of fuzzy numbers as described in Section 3.
Evaluation of accumulation of fuzzy numbers
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Figure 2: Granulation of sample S

from S in D is described as the cardinality of
granule S/D. A fuzzy number Xi ∈ S can be
included in D fully or partially or not at all.
Therefore the total count of fuzzy numbers in
D is, in general, non-precise. A non-precise
scalar count (scalar cardinality of a granule
of vague data) will be evaluated by a non-
negative real number.

Definition 3 Let S = {X1, . . . , Xn} be a
family of fuzzy numbers and let
FS(R) = {D ∈ F(R) : maxXi∈S ||suppXi|| <
||suppD||}. A scalar cardinality of granule
S/D, D ∈ FS(R), is the value ρ(D) of the
function ρ : FS(R) → [0, n], which satisfies
the following properties:

P1. if for all Xi ∈ S, Xi ∩ D = T then
ρ(D) = 0,
P2. if for all Xi ∈ S, Xi ⊂ D then ρ(D) = n,
P3. if for B, D ∈ FS(R), B ⊂ D then
ρ(B) ≤ ρ(D),
P4. if for B, D ∈ FS(R), D ∩ B = T and
D∪B ∈ FS(R) then ρ(D∪B) = ρ(D)+ρ(B).

One of the possible constructions of function
ρ from Definition 3 is given in the following
procedure.

Procedure 1
Step 1: Find fuzzy relation (degree of in-
clusion) ε : S × FS(R) → [0, 1] such that
ρε(D) = ε(Xi, D) satisfies properties P1−P4
from Definition 3 for n = 1.
Step 2: Create fuzzy set ϕD : S → [0, 1] such
that for all Xi ∈ S

ϕD(Xi) = ε(Xi, D). (5)

Step 3: Define ρ(D) as a scalar cardinality of
fuzzy set ϕD. Any scalar cardinality satisfying
axioms from Definition 1 can be used.

Example 1 - continued
Different inclusion grades ε and different
scalar cardinalities of fuzzy set ϕ can be used
in Procedure 1. For more information about
different degrees of inclusion see [9] and for
more information about different scalar car-
dinalities of a finite fuzzy set see [15]. We will
choose

ε(Xi, Cj) =
|Xi ∩ Cj |
|Xi| (6)

and

σ(ϕCj ) =
n∑

i=1

ϕCj (Xi). (7)

Functions ϕCj representing inclusion of Xi in
Cj , i = 1, . . . , 12, j = 1, 2, 3, are in Table 2.

Table 2: Inclusion of Xi in Cj

Xi ϕC1(Xi) ϕC2(Xi) ϕC3(Xi)
X1 1.000 0.000 0.000
X2 0.970 0.288 0.000
X3 0.856 0.600 0.000
X4 0.500 0.875 0.000
X5 0.286 0.970 0.000
X6 0.000 1.000 0.000
X7 0.000 1.000 0.000
X8 0.000 1.000 0.000
X9 0.000 0.980 0.144
X10 0.000 0.546 0.880
X11 0.000 0.191 0.979
X12 0.000 0.000 1.000

From Table 2 we obtain that ρ(C1) =
3.162, ρ(C2) = 7.45, and ρ(C3) = 3.003. Be-
cause categories C1, C2 and C3 are not mutu-
ally disjunctive, ρ(C1) + ρ(C2) + ρ(C3) 6= 12.

Scalar cardinalities listed above provide quick
information about the “size” of each granule.
They can be used, for example, for order-
ing of granules. We can see that the largest
granule is the category of observations labeled
as the “medium water level” followed by the
categories “low water level” and “high water
level”. However, interpretation of scalar car-
dinalities in terms of counts is not clear. If,
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for example, ρ(C1) = 1, it does not neces-
sarily mean that exactly one observation is
included in C1. There could be several obser-
vations partially included in C1. Better in-
terpretation of accumulation of vague data in
terms of “counts” can be provided by fuzzy
cardinality. It will be discussed in the next
section.

5 Fuzzy cardinality

It is obvious that a precise count (a natural
number) may represent the accumulation of
vague data in a vague category only to a cer-
tain degree (possibility). A fuzzy set defined
on the set of all natural numbers will be used
for characterization of the fuzzy cardinality of
a granule of vague data.

Definition 4 Let S be a family of n fuzzy
numbers. Then for D ∈ FS(R), fuzzy set
wD : N → [0, 1] is called a fuzzy cardinal-
ity of granule S/D if and only if the following
properties are satisfied:

P1. if for all Xi ∈ S, Xi ∩ D = T then
wD(t) = 0 for t > 0 and wD(0) = 1,
P2. if for all Xi ∈ S, Xi ⊂ D then wD(t) = 0,
for all t 6= n and wD(n) = 1,
P3. if for B, D ∈ FS(R), D ⊂ B we have
that wD(t1) = wB(t2) = 1 then t1 ≤ t2,
P4. if for B, D ∈ FS(R), D ∩ B = T
and D ∪ B ∈ FS(R) we have that wD(t1) =
wB(t2) = wD∪B(t3) = 1 then t3 = t1 + t2,
P5. if t1 ≤ t2 ≤ t3 then wD(t2) ≥
min{wD(t1), wD(t3)}.
One of the possible constructions of function
wD from Definition 4 is given in the following
procedure.

Procedure 2
Assume the degree of inclusion ε and fuzzy
set ϕD as in Procedure 1.
Step 1: Create fuzzy set wD : N → [0, 1]
such that wD(t) = FGC(ϕD)(t) for all t ∈ N .
Note that wD(t) can be interpreted as the de-
gree of possibility that at least t elements from
S are included in D. Function wD will be
called the lower fuzzy frequency function as-
sociated with D.
Step 2: Create fuzzy set wD : N → [0, 1] as

follows: wD(t) = FLC(ϕD)(t) for all t ∈ N .
Note that wD(t) can be interpreted as the
degree of possibility that at most t elements
from S are included in D. Function wD will
be called the upper fuzzy frequency function
associated with D.
Step 3: Create fuzzy set wD : N → [0, 1] as
follows: wD = FEC(ϕD). The value of wD(t)
evaluates the degree of possibility that the to-
tal number of elements from S included in D
is exactly t. Function wD (fuzzy cardinality
of granule S/D) can also be called the fuzzy
frequency function associated with D.

Example 1 - continued
We will use the degree of inclusion ε given by
(6). Then the lower fuzzy frequency function
associated with C1 is

wC1
(t) =



1 if t ∈ {0, 1},
0.970 if t = 2,
0.856 if t = 3,
0.500 if t = 4,
0.286 if t = 5,
0 otherwise.

(8)

The lower fuzzy frequency function associated
with C2 is

wC2
(t) =



1 if t ∈ {0, 1, 2, 3, },
0.980 if t = 4,
0.970 if t = 5,
0.875 if t = 6,
0.600 if t = 7,
0.546 if t = 8,
0.288 if t = 9,
0.191 if t = 10,
0 otherwise,

(9)

and the lower fuzzy frequency function asso-
ciated with C3 is

wC3
(t) =



1 if t ∈ {0, 1},
0.979 if t = 2,
0.884 if t = 3,
0.144 if t = 4,
0 otherwise.

(10)

Lower fuzzy frequency functions can be used
for graphical representation of “fuzzy bars” in
a fuzzy histogram. The fuzzy bar associated
with fuzzy interval C2 is depicted in Figure
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3. The fuzzy histogram describing distribu-
tion of vague observations from S in vague
categories from C is in Figure 4.
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Figure 3: Fuzzy bar associated with fuzzy in-
terval C2

Using Steps 2 and 3 from Procedure 2, we
obtain the following results: the fuzzy cardi-
nality of granule S/C1 is

wC1(t) =



0.030 if t = 1,
0.114 if t = 2,
0.500 if t = 3,
0.500 if t = 4,
0.286 if t = 5,
0 otherwise,

(11)

the fuzzy cardinality of granule S/C2 is

wC2(t) =



0.020 if t = 3,
0.030 if t = 4,
0.125 if t = 5,
0.400 if t = 6,
0.454 if t = 7,
0.546 if t = 8,
0.288 if t = 9,
0.191 if t = 10,
0 otherwise,

(12)
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Figure 4: Fuzzy histogram associated with
fuzzy partition C

and the fuzzy cardinality of granule S/C3 is

wC3(t) =



0.021 if t = 1,
0.116 if t = 2,
0.856 if t = 3,
0.144 if t = 4,
0 otherwise.

(13)

We can see that there is an equal possibil-
ity (0.5) that the total number of “low water
level” observations from sample S is 3 or 4.
The total number of “medium water level”
observations from sample S is 8 with possi-
bility 0.546 and the total number of “high
water level” observations from sample S is 3
with possibility 0.856. Fuzzy cardinalities of
granules S/C1, S/C2 and S/C3 are depicted
in Figures 5, 6 and 7, respectively.

An evaluation of the scalar cardinality of
granule S/D, D ∈ FS(R) can be derived from
an evaluation of its fuzzy cardinality by choos-
ing an appropriate numerical characterization
of the fuzzy cardinality membership function
wD. For example, let us denote by N∗ the
set of all t∗ ∈ N such that wD(t∗) = h(wD).
Then the arithmetic average from all integers
in N∗ fulfills properties P1-P4 from Definition
3. Approximation of fuzzy cardinality wD by

68 Proceedings of IPMU’08



*******

*

**

*
**

w1(t)

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12
t

Figure 5: Fuzzy cardinality of granule S/C1
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Figure 6: Fuzzy cardinality of granule S/C2

a single count t∗ ∈ N∗ is justified only if the
following conditions are satisfied:

1. |N∗| = 1,

2. wD(t∗) is reasonably large,

3. nonspecificity of fuzzy set wD is reason-
ably low.

Let us recall that nonspecificity is uncertainty
associated with a set of possible alternatives.
The lower is the number of alternatives, the
lower is nonspecificity. For any A ∈ FFS(M)

*******
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*

**
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t

Figure 7: Fuzzy cardinality of granule S/C3

we can evaluate nonspecificity by, e.g., U -
uncertainty [10] defined as

U(A) =
1

h(A)

h(A)∫
0

log2|At| dt. (14)

Observe that 0 ≤ U(A) ≤ log2|M |. More
information about measures of nonspecificity
of fuzzy sets can be found in [10, 17]. The
vague notions “reasonably large” and “rea-
sonably low” can be specified by appropriate
numerical thresholds for wD(t∗) and U(wD),
respectively.

Example 1 - continued
We will say that the height of a fuzzy cardi-
nality wCj is reasonably large if h(wCj ) ≥ 0.6.
We will consider the nonspecificity of a fuzzy
cardinality wCj reasonably low if U(wCj ) ≤
0.4log2|S| = 0.4log212 = 1.434. Fuzzy cardi-
nality wC1 attains its maximum 0.5 at t∗ = 3
and t∗ = 4 and U(wC1) = 2.702. Fuzzy
cardinality wC2 has height 0.546 at t∗ =
8 and U(wC2) = 1.671. In both cases the
height is below the specified threshold and U -
uncertainty is above the specified level. Fuzzy
cardinality wC3 has height 0.856 at t∗ = 3 and
U(wC3) = 0.258. We conclude that only fuzzy
cardinality of the vague category C3 (high wa-
ter level) can be reasonably approximated by
count 3.

6 Conclusion

We introduced axiomatic definitions of scalar
and fuzzy cardinalities of a granule of vague
data. We showed how these cardinalities can
be evaluated by using degrees of inclusion of
fuzzy sets and scalar and fuzzy cardinalities of
finite fuzzy sets. Other approaches to the con-
struction of scalar and fuzzy counts of vague
data will be explored in our future work. We
discussed the lower and the upper fuzzy fre-
quency functions associated with a fuzzy in-
terval defined on the range of a sample of
vague data. It was shown that the lower fuzzy
frequency function can be graphically repre-
sented as a “fuzzy bar” of a fuzzy histogram.
Computational steps illustrated on a small ex-
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ample can provide guidelines for application
of suggested procedures in practice.
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