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Abstract

We compare the different notions of
conditional coherence within the be-
havioural theory of imprecise proba-
bilities when all the spaces are finite.
We show that the differences be-
tween the notions are due to condi-
tioning on sets of (lower, and in some
cases upper) probability zero. Next,
we characterise the range of coherent
extensions, proving that the great-
est coherent extensions can always
be calculated using the notion of reg-
ular extension.
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1 Introduction

This paper is devoted to the study of the dif-
ferent notions of coherence within the the-
ory of conditional lower previsions. This
theory, established mainly in [3], provides a
behavioural interpretation of probability in
terms of acceptable buying and selling prices
for gambles. It includes as particular cases
most of the other uncertainty models present
in the literature.

In spite of these virtues, one of the reasons
why this theory is not so popular is the diffi-
culty in the verification of the coherence of a
number of assessments. The goal of this paper
is to provide more manageable expressions for

the notions of weak and strong coherence of a
number of conditional lower previsions.

We restrict ourselves here to finite spaces. In
that case, the different notions of coherence
can be simplified a bit, and conditional lower
previsions can be seen as models for the im-
precise knowledge of conditional linear previ-
sions (conditional expectations with respect
to finitely additive probabilities). The finite
case is also interesting for a number of appli-
cations, for instance in the context of credal
networks.

The paper is organised as follows: in Sec-
tion 2, we give a brief introduction to the
behavioural theory of conditional lower previ-
sions; in section 3, we compare the notions of
weak and strong coherence, and avoiding par-
tial loss; in section 4 we provide the smallest
and the greatest conditional lower previsions
which are coherent with some joint; and in
section 5 we give some further comments on
the subject.

2 Coherence notions on finite
spaces

Let us give a short introduction to the con-
cepts and results from the behavioural theory
of imprecise probabilities that we shall use in
the rest of the paper. We refer to [3] for an
in-depth study of these and other properties.

Given a possibility space Ω, a gamble is a
bounded real-valued function on Ω. This
function represents a random reward f(ω),
which depends on the a priori unknown value
ω of Ω. We shall denote by L(Ω) the set of
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all gambles on Ω. A lower prevision P is a
real functional defined on some set of gambles
K ⊆ L(Ω). It is used to represent a subject’s
supremum acceptable buying prices for these
gambles, in the sense that for any ε > 0 and
any f in K the subject is disposed to accept
the uncertain reward f − P (f) + ε. Given a
lower prevision P , P will denote its conjugate
upper prevision, given by P (f) = −P (−f) for
any gamble f . P (f) represents the infimum
acceptable selling price for the gamble f for
our subject.

We can also consider the supremum buying
prices for a gamble, conditional on a subset
of Ω. Given such a set B and a gamble f on
Ω, the lower prevision P (f |B) represents the
subject’s supremum acceptable buying price
for the gamble f , updated after coming to
know that the unknown value ω belongs to
B, and nothing else. If we consider a parti-
tion B of Ω (for instance a set of categories),
then we shall represent by P (f |B) the gamble
on Ω that takes the value P (f |B) if and only
if ω ∈ B. The functional P (·|B) that maps
any gamble f on its domain into the gamble
P (f |B) is called a conditional lower prevision.

Let us now re-formulate the above concepts
in terms of random variables, which are the
focus of our attention in this paper. Consider
random variables X1, . . . , Xn, taking values in
respective finite sets X1, . . . ,Xn. For any sub-
set J ⊆ {1, . . . , n} we shall denote by XJ the
(new) random variable

XJ := (Xj)j∈J ,

which takes values in the product space

XJ := ×j∈JXj .
We shall also use the notation X n for X{1,...,n}.
In the current formulation made by random
variables, X n is just the definition of the pos-
sibility space Ω.
Definition 1. Let J be a subset of {1, . . . , n},
and let πJ : X n → XJ be the so-called projec-
tion operator, i.e., the operator that drops the
elements of a vector in X n that do not corre-
spond to indexes in J . A gamble f on X n is
called XJ -measurable when for any x, y ∈ X n,
πJ(x) = πJ(y) implies that f(x) = f(y).

There is a one-to-one correspondence between
the gambles on X n that are XJ -measurable
and the gambles on XJ . We shall denote by
KJ the set of XJ -measurable gambles.

Consider two disjoint subsets O, I of
{1, . . . , n}. P (XO|XI) represents a subject’s
behavioural dispositions about the gambles
that depend on the outcome of the variables
{Xk, k ∈ O}, after coming to know the
outcome of the variables {Xk, k ∈ I}. As
such, it is defined on the set of gambles
that depend on the values of the variables
in O ∪ I only, i.e., on the set KO∪I of the
XO∪I -measurable gambles on X n. Given
such a gamble f and x ∈ XI , P (f |XI = x)
represents a subject’s supremum acceptable
buying price for the gamble f , if he came to
know that the variable XI took the value x
(and nothing else). Under the notation we
gave above for lower previsions conditional
on events and partitions, this would be
P (f |B), where B := π−1

I (x). When there
is no possible confusion about the variables
involved in the lower prevision, we shall use
the notation P (f |x) for P (f |XI = x). The
sets {π−1

I (x) : x ∈ XI} form a partition
of X n. Hence, we can define the gamble
P (f |XI), which takes the value P (f |x) on
x ∈ XI . This is a conditional lower prevision.

These assessments can be made for any dis-
joint subsets O, I of {1, . . . , n}, and therefore
it is not uncommon to model a subject’s be-
liefs using a finite number of different con-
ditional previsions. We should verify then
that all the assessments modelled by these
conditional previsions are coherent with each
other. The first requirement we make is that
for any disjoint O, I ⊆ {1, . . . , n}, the condi-
tional lower prevision P (XO|XI) defined on
KO∪I should be separately coherent. In this
case, where the domain is a linear set of gam-
bles, separate coherence holds if and only if
the following conditions are satisfied for any
x ∈ XI , f, g ∈ KO∪I , and λ > 0:

P (f |x) ≥ min
ω∈π−1

I (x)
f(ω). (SC1)

P (λf |x) = λP (f |x). (SC2)
P (f + g|x) ≥ P (f |x) + P (g|x). (SC3)
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It is also useful for this paper to consider the
particular case where I = ∅, that is, when we
have (unconditional) information about the
variables XO. We have then an (uncondi-
tional) lower prevision P (XO) on the set KO
of XO-measurable gambles. Separate coher-
ence is called then simply coherence, and it
holds if and only if the following three condi-
tions hold for any f, g ∈ KO, and λ > 0:

P (f) ≥ min f. (C1)
P (λf) = λP (f). (C2)
P (f + g) ≥ P (f) + P (g). (C3)

In general, separate coherence is not enough
to guarantee the consistency of the lower pre-
visions: conditional lower previsions can be
conditional on the values of many different
variables, and still we should verify that the
assessments they provide are consistent not
only separately, but also with each other. For-
mally, we are going to consider what we shall
call collections of conditional lower previsions.
Definition 2. Consider conditional previsions
{P 1(XO1 |XI1), . . . , Pm(XOm |XIm)} with re-
spective domainsK1, . . . ,Km ⊆ L(X n), where
Kj is the set of XOj∪Ij -measurable gambles,1

for j = 1, . . . ,m. This is called a collection
on Xn when for each j1 6= j2 in {1, . . . ,m},
either Oj1 6= Oj2 or Ij1 6= Ij2 .

This means that we do not have two
different conditional lower previsions giv-
ing information about the same set of
variables XO, conditional on the same
set of variables XI . Given a collec-
tion P 1(XO1 |XI1), . . . , Pm(XOm |XIm) of con-
ditional lower previsions, there are different
ways in which we can guarantee their consis-
tency2. The first one is called avoiding partial
loss.

The XI -support S(f) of a gamble f in KO∪I
is given by

S(f) := {π−1
I (x) : x ∈ XI , fIπ−1

I (x) 6= 0}, (1)

1We use Kj instead of KOj∪Ij in order to alleviate
the notation when no confusion is possible about the
variables involved.

2We give the particular definitions of these notions
for finite spaces. See [1, 3] for the general definitions
of these notions on infinite spaces and non-linear do-
mains.

i.e., it is the set of conditioning events for
which the restriction of f is not identically
zero. We shall also use the notations

G(f |x) = Ix(f − P (f |x)),

G(f |XI) =
∑
x∈XI

G(f |x) = f − P (f |XI)

for any f ∈ KO∪I and any x ∈ XI .
Definition 3. Consider separately coherent
P 1(XO1 |XI1), . . . , Pm(XOm |XIm). We say
that they avoid partial loss when for any
fj ∈ Kj , j = 1, . . . ,m,

max
ω∈Af1,...,fm

 m∑
j=1

Gj(fj |XIj )

 (ω) ≥ 0,

where Af1,...,fm is the set of elements that
belong to some B ∈ Sj(fj) for some j =
1, . . . ,m.

The idea behind this notion is that a combi-
nation of transactions that are acceptable for
our subject should not make him lose utiles.
It is based on the rationality requirement that
a gamble f ≤ 0 such that f < 0 on some set
A should not be desirable.
Definition 4. Consider separately coherent
P 1(XO1 |XI1), . . . , Pm(XOm |XIm). We say
that they are weakly coherent when for any
fj ∈ Kj , j = 1, . . . ,m, j0 ∈ {1, . . . ,m},
f0 ∈ Kj0 , x0 ∈ XIj0 ,

max
ω∈Xn

 m∑
j=1

Gj(fj |XIj )−Gj0(f0|x0)

 (ω) ≥ 0.

With this condition we require that our sub-
ject should not be able to raise his supremum
acceptable buying price P j0(f0|x0) for a gam-
ble f0 contingent on x0 by taking into account
other conditional assessments. However, un-
der the behavioural interpretation, a number
of weakly coherent conditional lower previ-
sions can still present some forms of inconsis-
tency with each other; see [3, Example 7.3.5]
for an example and [3, Chapter 7] and [4] for
some discussion. On the other hand, weak co-
herence neither implies or is implied by the
notion of avoiding partial loss. Because of
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these two facts, we consider another notion
which is stronger than both, and which is
called (joint or strong) coherence:3

Definition 5. Consider separately coherent
P 1(XO1 |XI1), . . . , Pm(XOm |XIm). We say
that they are coherent when for every fj ∈ Kj ,
j = 1, . . . ,m, j0 ∈ {1, . . . ,m}, f0 ∈ Kj0 , x0 ∈
XIj0 ,

 m∑
j=1

Gj(fj |XIj )−Gj0(f0|x0)

 (ω) ≥ 0 (2)

for some ω ∈ π−1
Ij0

(x0) ∪Af1,...,fm .

Because we are dealing with finite spaces,
this notion coincides with the one given by
Williams in [5]. The coherence of a collection
of conditional lower previsions implies their
weak coherence; although the converse does
not hold in general, it does in the particular
case when we only have a conditional and an
unconditional lower prevision.

It is important at this point to introduce a
particular case of conditional lower previsions
that will be of special interest for us: that of
conditional linear previsions. We say that a
conditional lower prevision P (XO|XI) on the
set KO∪I is linear if and only if it is separately
coherent and moreover P (f+g|x) = P (f |x)+
P (g|x) for any x ∈ XI and f, g ∈ KO∪I .
Conditional linear previsions correspond to
the case where a subject’s supremum accept-
able buying price (lower prevision) coincides
with his infimum acceptable selling price (up-
per prevision) for any gamble on the domain.
When a separately coherent conditional lower
prevision P (XO|XI) is linear we shall denote
it by P (XO|XI); in the unconditional case, we
shall use the notation P (XO).

One interesting particular case is that where
we are given only an unconditional lower pre-
vision P on L(X n) and a conditional lower
prevision P (XO|XI) on KO∪I . Then weak
and strong coherence are equivalent, and they
both hold if and only if, for any XO∪I -

3The distinction between this and the uncondi-
tional notion of coherence mentioned above will always
be clear from the context.

measurable f and any x ∈ XI ,
P (G(f |x)) = 0. (GBR)

This is called the Generalised Bayes’ Rule
(GBR). When P (x) > 0, GBR can be used
to determine the value P (f |x): it is then the
unique value for which P (G(f |x)) = P (Ix(f−
P (f |x))) = 0 holds.

If P and P (XO|XI) are linear, they are coher-
ent if and only if for any XO∪I -measurable f ,
P (f) = P (P (f |XI)). This is equivalent to re-
quiring that P (f |x) = P (fIx)

P (x) for all f ∈ KO∪I
and all x ∈ XI with P (x) > 0.

3 Relationships between weak and
strong coherence

Let us study in more detail the notions of
avoiding sure loss, weak coherence and strong
coherence. We start by recalling a recent
characterisation of weak coherence:
Theorem 1. [2, Theorem 1]
P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are weakly
coherent if and only if there is a lower
prevision P on L(X n) that is pairwise
coherent with each conditional lower pre-
vision P j(XOj |XIj ). In particular, given
linear conditional previsions Pj(XOj |XIj ) for
j = 1, . . . ,m, they are weakly coherent if and
only if there is a linear prevision P which is
coherent with each Pj(XOj |XIj ).

This theorem shows one of the differences be-
tween weak and strong coherence: weak co-
herence is equivalent to the existence of a
joint which is coherent with each of the as-
sessments, considered separately; coherence
on the other hand is equivalent to the exis-
tence of a joint which is coherent with all the
assessments, taken together.

Weakly coherent conditional previsions can be
given a sensitivity analysis interpretation as
lower envelopes of precise models; a similar
result for coherence can be found in [3, The-
orem 8.1.9].
Theorem 2. Any weakly coherent
P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are the
lower envelope of a family of weakly coherent
conditional linear previsions.
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From Theorem 1, weakly coherent conditional
lower previsions always have a compatible
joint P . Our following result establishes the
smallest such joint:

Theorem 3. Consider weakly coherent
P (XO1 |XI1), . . . , P (XOm |XIm), and let E be
given on L(X n) by

E(f) := sup{α : ∃fj ∈ Kj , j = 1, . . . ,m, s.t.

max
ω∈Xn

[
m∑
j=1

G(fj |XIj )− (f − α)](ω) < 0}. (3)

E is the smallest coherent lower prevision
which is coherent with each P (XOj |XIj ).

Using this result and Theorem 2, we can also
give a sensitivity analysis interpretation to E
in the precise case.

Corollary 1. Given weakly coherent
P (XO1 |XI1), . . . , P (XOm |XIm), the lower pre-
vision E defined in (3) is the lower envelope
of the set M of linear previsions which are
coherent with each P (XOj |XIj ), j = 1, . . . ,m.

Let us focus now on the relationship between
weak and strong coherence and avoiding par-
tial loss. We start by considering this prob-
lem in the precise case. In this case coherence
is equivalent to avoiding partial loss, and is
in general greater than weak coherence; see
[3, Example 7.3.5] for an example of weakly
coherent conditional previsions that incur a
sure loss. We are going to show next that
when a number of conditional previsions are
weakly coherent but not coherent, this is due
to the definition of the conditional previsions
on some sets of probability zero.

Theorem 4. Consider weakly co-
herent conditional linear previsions
P (XO1 |XI1), . . . , P (XOm |XIm) with respec-
tive domains K1, . . . ,Km, and let E be the
conjugate of the functional E defined in (3).
They are coherent if and only if for all gambles
fj ∈ Kj, j = 1, . . . ,m with E(Af1,...,fm) = 0,
maxω∈Af1,...,fm

∑m
j=1[fj − P (XOj |XIj )](ω) ≥

0.

Taking into account this theorem and the en-
velope result established in Theorem 2, we
can characterise the difference between weak

coherence and avoiding partial loss for condi-
tional lower previsions:

Corollary 2. Consider weakly coherent
P (XO1 |XI1), . . . , P (XOm |XIm). They avoid
partial loss if and only if for all fj ∈
Kj, j = 1, . . . ,m with E(Af1,...,fm) = 0,
maxω∈Af1,...,fm

∑m
j=1[fj − P (XOj |XIj )](ω) ≥

0, where E is the conjugate of the functional
defined in (3).

Hence, if a number of weakly coherent lower
previsions incur sure loss, this incoherent be-
haviour is due to the definition of the con-
ditional previsions on some sets of zero up-
per probability. It may be argued, specially
since we are dealing with finite spaces, that we
may modify the definition of these conditional
lower previsions on these sets in order to avoid
partial loss without further consequences, in
the sense that this will not affect their weak
coherence: they will still be weakly coherent
with the same unconditional P .

So let us consider a number of weakly coherent
conditional lower previsions that avoid partial
loss. Our next example shows that, unlike for
precise previsions, this is not sufficient for co-
herence. Hence, Theorem 4 does not extend
to the imprecise case. This is because the
condition equivalent to avoiding partial loss
in Corollary 2 is not equivalent to coherence,
in the sense that the union of the supports of
a number of gambles producing incoherence
may have positive upper probability:
Example 1. Consider two random variables
X1, X2 taking values in the finite space X :=
{1, 2, 3}, and let us define conditional lower
previsions P (X2|X1) and P (X1|X2) by

P (f |X1 = 1) = f(1, 1)
P (f |X1 = 2) = f(2, 3)
P (f |X1 = 3) = min{f(3, 2), f(3, 3)}
P (f |X2 = 1) = f(2, 1)
P (f |X2 = 2) = min{f(1, 2), f(2, 2), f(3, 2)}
P (f |X2 = 3) = min{f(1, 3), f(2, 3), f(3, 3)},

for any gamble f in L(X 2).

Let us consider the unconditional lower
prevision P on L(X 2) given by P (f) =
min{f(3, 2), f(3, 3)}. Using Theorem 1, we
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can see that P , P (X1|X2) and P (X2|X1) are
weakly coherent.

To see that P (X1|X2) and P (X2|X1) avoid
partial loss, we apply Corollary 2 and consider
any f1, f2 ∈ L(X 2) such that P (Af1,f2) = 0.
Let us prove that

max
ω∈Af1,f2

[G(f1|X2) +G(f2|X1)](ω) ≥ 0. (4)

Assume f1 6= 0 6= f2; the other cases are sim-
ilar (and easier). Since P (Af1,f2) = 0 for any
coherent lower prevision that is weakly coher-
ent with P (X1|X2) and P (X2|X1), we deduce
that neither (3, 2) nor (3, 3) belong to Af1,f2 ,
and consequently f1(x, 2) = f1(x, 3) = 0 for
x = 1, 2, 3. If (X1 = 2) ∈ S1(f2), then
[G(f1|X2) +G(f2|X1)](2, 3) = 0 + 0 = 0, and
therefore Equation (4) holds. If (X1 = 2) /∈
S1(f2), then [G(f1|X2) + G(f2|X1)](2, 1) =
0 + 0 = 0.

Let us prove finally that P (X1|X2), P (X2|X1)
are not coherent. Let f1 = −I{(1,1),(3,1)}, f2 =
−I{(1,2),(1,3),(2,1),(2,2)} and f3 = I{(2,3),(3,3)},
and let us show that

[G(f1|X2)+G(f2|X1)−G(f3|X2 = 3)](ω) < 0

for all ω ∈ B := π−1
2 (3) ∪ Af1,f2 . S2(f1) =

{X2 = 1} and S1(f2) = {X1 = 1, X1 = 2},
whence B = S2(f1) ∪ S1(f2) ∪ {X2 = 3} =
X 2 \ {(3, 2)}. On the other hand, the gamble
g := G(f1|X2) + G(f2|X1) − G(f3|X2 = 3)
satisfies g(ω) = −1 for all ω ∈ B. This shows
that P (X1|X2), P (X2|X1) are not coherent.
However, E(B) = 1 because (3, 3) ∈ B. �

Hence, when a number of conditional lower
previsions are weakly coherent but not coher-
ent, the behaviour causing a contradiction can
be caused by conditioning on sets of positive
upper probability.

It is interesting to look for conditions under
which it suffices to check the weak coherence
of a number of previsions to be able to de-
duce their coherence. One such condition was
established, in a different context, in [2].

In the case of conditional linear previsions,
Theorem 4 allows us to derive immediately
the following result:

Lemma 1. Consider weakly coherent
P1(XO1 |XI1), . . . , Pm(XOm |XIm), and
let P be a coherent prevision such that
P, Pj(XOj |XIj ) are coherent for j = 1, . . . ,m.
If P (x) > 0 for any x ∈ XIj , j = 1, . . . ,m,
then P1(XO1 |XI1), . . . , Pm(XOm |XIm) are
coherent.

From this result, we can easily derive a similar
condition for conditional lower previsions.

Theorem 5. Consider weakly coher-
ent P 1(XO1 |XI1), . . . , Pm(XOm |XIm),
and let P be a coherent prevision such
that P , P j(XOj |XIj ) are coherent for
j = 1, . . . ,m. If P (x) > 0 for all
x ∈ XIj and all j = 1, . . . ,m, then
P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are co-
herent.

We can deduce from the proof of this theo-
rem that if a number of weakly coherent con-
ditional lower previsions avoid partial loss but
are not coherent, for any gambles f0, . . . , fm
violating Eq. (2) it must be E(π−1

Ij0
(x0) ∪

Af1,...,fm) = 0 (although, as Example 1 shows,
it can be E(π−1

Ij0
(x0) ∪Af1,...,fm) > 0).

Note that when the conditioning events have
all positive lower probability, the conditional
lower previsions are uniquely determined by
the joint P and by (GBR). Hence, in that
case P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are the
only conditional previsions which are coherent
with P .

4 Coherent updating

Although our last result is interesting, it is
fairly common in situations of imprecise in-
formation to be conditioning on some sets
of lower probability zero and positive upper
probability. In that case, there is an infinite
number of conditional lower previsions which
are coherent with the unconditional P . In this
section, we characterise them by determining
the smallest and the greatest coherent exten-
sions.
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4.1 Updating with the regular
extension

The first updating rule we are going to con-
sider is called the regular extension. Con-
sider an unconditional lower prevision P and
disjoint O, I in {1, . . . , n}. The conditional
lower prevision R(XO|XI) defined by regular
extension is given, for any f ∈ KO∪I and any
x ∈ XI , by

R(f |x) := inf
{
P (fIx)
P (x)

: P ≥ P , P (x) > 0
}
.

For this definition to be applicable, we need
that P (x) > 0 for any x ∈ XI . The regular
extension is the lower envelope of the updated
linear previsions using Bayes’s rule.

Lemma 2. Let P , P (XO|XI) be coherent un-
conditional and conditional previsions, with
XI finite. Assume that P (x) > 0 for all
x ∈ XI , and define R(XO|XI) from P using
regular extension. Then:

1. P ,R(XO|XI) are coherent.

2. R(XO|XI) ≥ P (XO|XI).

3. For any P ≥ P , there exists some
P (XO|XI) which is coherent with P and
dominates P (XO|XI).

From this lemma, we can deduce that if we use
regular extension to define conditional lower
previsions R1(XO1 |XI1), . . . , Rm(XOm |XIm)
from an unconditional P , then
P ,R1(XO1 |XI1), . . . , Rm(XOm |XIm) are
weakly coherent. Moreover, if we consider any
other weakly coherent conditional lower pre-
visions P 1(XO1 |XI1), . . . , Pm(XOm |XIm), it
must hold that Rj(XOj |XIj ) ≥ P j(XOj |XIj )
for j = 1, . . . ,m. Hence, the procedure of
regular extension provides the greatest, or
more informative, updated lower previsions
that are weakly coherent. In the following
theorem we prove that they are also coherent.

Theorem 6. Let P be a coherent lower pre-
vision on L(X n), and consider disjoint Oj , Ij
for j = 1, . . . ,m. Assume that P (x) > 0 for
all x ∈ XIj , and let us define Rj(XOj |XIj ) us-
ing regular extension for j = 1, . . . ,m. Then

P ,R1(XO1 |XI1), . . . , Rm(XOm |XIm) are co-
herent.

When P (x) = 0 for some x ∈ XIj , j =
1, . . . ,m, we cannot use regular extension to
define Rj(XOj |x). It can be checked that in
that case any separately coherent conditional
lower prevision is weakly coherence with P .
However, we cannot guarantee the strong co-
herence:
Example 2. Let X1 = X2 = {1, 2, 3}, and
P (X1), P (X2|X1) determined by P (X1 =
3) = 1, and P (X2 = x|X1 = x) = 1
for x = 1, 2, 3. From [3, Theorem 6.7.2],
P (X1), P (X2|X1) are coherent. However, if
we define arbitrarily P (X1|X2 = x) when
P (X2 = x) = 0 (that is, for x = 1, 2), then
P (X1|X2) and P (X2|X1) may not be coher-
ent: make it for instance P (X1 = 1|X2 = 2) =
1 = P (X1 = 2|X2 = 1) = P (X1 = 3|X2 = 3).
Then [3, Example 7.3.5] shows that P (X1|X2)
and P (X2|X1) are not coherent. �

4.2 Updating with the natural
extension

Next, we introduce the notion of natural
extension. Consider conditional lower pre-
visions P 1(XO1 |XI1), . . . , Pm(XOm |XOm) de-
fined on linear spaces H1, . . . ,Hm and avoid-
ing partial loss. Given j0 ∈ {1, . . . ,m}, a
gamble f on X n and an element x0 of XIj0 , the
natural extension Ej0(f |x0) is defined as the
supremum α for which there are fj ∈ Hj , j =
1, . . . ,m such that m∑

j=1

G(fj |XIj )− Iπ−1
Ij0

(x0)(f − α)

 (ω) < 0

for all ω ∈ π−1
Ij0
∪ Af1,...,fm . It is proven

in [3, Theorem 8.1.9] that the lower pre-
visions E1(XO1 |XI1), . . . , Em(XOm |XIm) ob-
tained in this way are the smallest co-
herent conditional previsions that dominate
P 1(XO1 |XI1), . . . , Pm(XOm |XIm) on their do-
mains.

Given disjoint Oj , Ij for j = 1, . . . ,m, we can
define separately coherent P j(XOj |XIj )
on the linear set of constant gam-
bles by P j(µ|x) = µ for all x ∈ Xj ,
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j = 1, . . . ,m. Then, given any coherent
lower prevision P on L(X n) the lower previ-
sions P , P 1(XO1 |XI1), . . . , Pm(XOm |XIm)
avoid partial loss. We can then
consider their natural extensions
P ,E1(XO1 |XI1), . . . , Em(XOm |XIm) using
the above definition.

Theorem 7. If we use the above procedure,
P ,E1(XO1 |XI1), . . . , Em(XOm |XIm) are co-
herent.

The natural extension provides the smallest
conditional lower previsions which are coher-
ent together with P . The conditional lower
previsions Ej(XOj |XIj ) are uniquely deter-
mined by the (GBR) when P (x) > 0 and
are vacuous when P (x) = 0, being then de-
fined by Ej(f |x) = minω∈π−1

Ij
(x) f(ω) for any

f ∈ Kj . Hence, in that respect the natural
extensions can be calculated more easily than
the regular extensions.

We showed before that the conditional previ-
sions defined by regular extension were also
the greatest conditional lower previsions that
are weakly coherent with the unconditional
lower prevision P . Using Theorem 1 and the
results in [3, Chapter 6], it is not difficult
to show that the natural extensions are the
smallest weakly coherent extensions:

Theorem 8. Let P be coherent on L(X n),
and define E1(XO1 |XI1), . . . , Em(XOm |XIm)
using natural extension. Then
P ,E1(XO1 |XI1), . . . , Em(XOm |XIm) are
weakly coherent and for any other conditional
previsions P 1(XO1 |XI1), . . . , Pm(XOm |XIm)
which are weakly coherent with P , it holds
that P j(XOj |XIj ) ≥ Ej(XOj |XIj ) for
j = 1, . . . ,m.

5 Conclusions

In this paper we have studied the differ-
ence between weak and strong coherence in
the case of finite spaces, and established the
smallest and greatest updated previsions. Al-
though weak and strong coherence are not
equivalent, the smallest and greatest weakly
coherent updated previsions coincide with the
smallest and greatest coherent updated previ-

sions, and are given by the natural and regular
extensions, respectively.

It is important to remark that most of the
properties established in this paper do not
extend to conditional previsions on infinite
spaces: for instance, weakly coherent con-
ditional lower previsions are not necessarily
lower envelopes of sets of weakly coherent con-
ditional linear previsions. Similarly, the reg-
ular extensions are not necessarily coherent
with the unconditional prevision, and they
will only provide an upper bound for the
greatest coherent updated previsions. The
study of these properties in the infinite case is
the main open problem we point out for the
future.
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