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Abstract

The paper deals with combinatorial
and stochastic structures of cubical

token systems. A cubical token sys-
tem is an instance of a token sys-

tem, which in turn is an instance of
a transition system. A formal theory
based on a system of four indepen-

dent axioms for cubical token sys-
tems and main algebraic properties

of these systems are introduced. A
representation theorem for a cubical

token system is established asserting
that the graph of such a system is

cubical. Stationary distributions for
random walks on cubical token sys-

tems are calculated.

Keywords: Token system, cubical

system, medium, Markov chain

1 Introduction

Cubical token systems and media are partic-

ular instances of a general algebraic struc-
ture, called ‘token system’, describing a math-

ematical, physical, or behavioral system as
it evolves from one ‘state’ to another. This

structure is formalized as a pair (S, T) con-
sisting of a set S of states and a set T of to-
kens. Tokens are transformations of the set of

states. Strings of tokens are ‘messages’ of the
token system.

In the field of computer science, tokens sys-
tems are special forms of ‘transition sys-

tems’ [19]. However, we do not follow this lead

in the paper. Instead, we propose a system
of axioms specifying a class of token systems.

In the framework of axiomatic approach, we
make no assumptions regarding the nature of

states and tokens. Four independent axioms
are postulated on the pair (S, T), which then

called a cubical token system. The name is
justified by the result of Section 6 asserting
that the graph of a cubical system is cubical,

that is, a subgraph of a hypercube.

The concept of a medium was introduced

in [5] as a token system specified by another
system of constraining axioms, and developed

further in [6, 16]. For more recent advances in
media theory the reader is referred to [13, 14]

and the monograph “Media Theory” [4].

While the concepts of cubical token systems
and media may seem abstract and far remote

from applications, they are easily specialized
into concrete models, offering useful tools for

the analysis of data. Two examples are se-
lected to illustrate instances of cubical token

systems.

(1) Preference relations. In many empirical
situations in social sciences, subjects are re-

peatedly asked to provide judgments concern-
ing commodities or individuals. It is typical

that these judgments take the form of binary
relations such as weak orders, semiorders, or

other partial orders. A family S of partial
orders on a finite set, equipped with the set

of transformations T consisting in adding (or
removing) an ordered pair to (or from) a par-

tial order to form another partial order in S

is an instance of a token system. The token
system (S, T) is cubical in many applications
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(see examples in Section 7).

(2) Learning spaces. The knowledge struc-
ture [3] is a family K of subsets of a basic

set Q of items of knowledge. Each of the sets
in K is a (knowledge) state, representing the

competence of a particular individual in the
population of reference. In a typical example,

the set Q is a set of questions (problems) each
of which has a correct response. The knowl-

edge state of an individual is represented by
the set of questions in Q that the individual

is capable of answering in ideal conditions. A
learning space is a knowledge structure satis-
fying two compelling axioms. To cast a learn-

ing space as a token system (K, T), one takes
any knowledge state to be a state of the token

system; the transformations in T consist in
adding or removing an item to (from) a state.

The token system (K, T) is cubical. Further-
more, it is a medium. The computer educa-

tional system ALEKS provides on the Inter-
net (www.aleks.com) an educational environ-

ment based on the theory of learning spaces.
This system is currently used by many schools
in the US and abroad.

We begin by introducing basic concepts of to-
ken systems in Section 2 and axioms for cu-

bical token systems and media in Section 3,
where it is also shown that media form a

proper subclass of cubical systems.

G-systems are token systems defined on con-
nected families of sets. In Section 4 we show

that they are instances of cubical systems. G-
systems are typical examples of cubical sys-

tems as it is demonstrated in Section 6.

Structural properties of states and messages

of a cubical system are established in Section 5
in terms of their ‘contents’. These properties

are crucial for the development of stochastic
token theory presented in Section 8, where
stochastic properties of cubical token systems

are established.

The main result of the algebraic part of

cubical systems theory—the representation
theorem—is established in Section 6 (Theo-

rem 6.1). In Section 7 we give examples of
cubical systems.

Proofs of the results presented in the paper
are found in [15].

2 Token systems

In this section we introduce basic concepts of

token systems theory.

Let S be a set of states. A token is a trans-

formation τ : S 7→ Sτ . By definition, the
identity function τ0 on S is not a token. Let

T be a set of tokens. The pair (S, T) is called
a token system [5]. To avoid trivialities, we
assume that |S| ≥ 2 and T 6= ∅.

Let S and V be two states of a token system
(S, T). Then V is adjacent to S if V 6= S and

V = Sτ for some token τ ∈ T. A token τ̃ is a
reverse of a token τ if, for all distinct S, V ∈ S,

we have

Sτ = V ⇐⇒ V τ̃ = S.

Two distinct states S and V are adjacent if S

is adjacent to V and V is adjacent to S.

A message of a token system (S, T) is a string

of elements of the set T. We write these
strings in the form m = τ1τ2 . . . τn. If a token
τ occurs in the string τ1τ2 . . . τn, we say that

the message m = τ1τ2 . . . τn contains τ .

A message m = τ1τ2 . . . τn defines a transfor-

mation

S 7→ Sm = ((. . . ((Sτ1)τ2) . . .)τn)

of the set of states S. By definition, the empty

message defines the identity transformation τ0

of S. If V = Sm for some message m and

states S, V ∈ S, then we say that m produces
V from S or, equivalently, that m transforms

S into V . More generally, if m = τ1 . . . τn,
then we say that m produces a sequence of

states (Si), where Si = Sτ0τ1 . . . τi.

If m and n are two messages, then mn stands
for the concatenation of the strings m and n.

We denote by m̃ = τ̃n . . . τ̃1 the reverse of
the message m = τ1 . . . τn, provided that the

tokens in m̃ exist.

A message m = τ1 . . . τn is vacuous if the set

of indices {1, . . . , n} can be partitioned into
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pairs i, j with i 6= j, such that τi and τj are
mutual reverses.

A message m is effective (respectively inef-

fective) for a state S if Sm 6= S (respectively
Sm = S) for the corresponding transforma-

tion m. A message m = τ1 . . . τn is stepwise
effective for S if Si 6= Si−1, 1 ≤ k ≤ n, in the

sequence of states (Si) produced by m from
S. A message is closed for a state S if it is

stepwise effective and ineffective for S.

Two token systems (S, T) and (S′, T′) are said
to be isomorphic if there is a pair (α, β) of

bijections α : S → S′ and β : T → T′ such
that

Sτ = T ⇔ α(S)β(τ) = α(T )

for all S, T ∈ S and τ ∈ T.

3 Axioms for cubical systems and

media

Definition 3.1. A token system (S, T) is
called a cubical token system if the following

axioms are satisfied:

[C1] Every token τ ∈ T has a reverse τ̃ 6= τ in

T.

[C2] For any two distinct states S and T there

is a stepwise effective message producing
T from S.

[C3] A message which is stepwise effective for

some state is closed for that state if and
only if it is vacuous.

[C4] If m = τ1 . . . τn is a stepwise effective

message for some state, then occurrences
of a token and its reverse alternate in m.

More specifically, if τi = τj = τ for i < j
and some τ ∈ T, then τk = τ̃ for some

i < k < j.

In the rest of the paper, we leave out the word

“token” in “cubical token system”.

Theorem 3.1. Axioms [C1]–[C4] are inde-

pendent.

We need the concept of a ‘concise message’ for

the definition of a medium.

Definition 3.2. A message m is said to be
concise for a state S if: (i) m is stepwise ef-

fective for S, (ii) no token occurs twice in m,
and (iii) m does not contain a token and its
reverse.

Definition 3.3. A token system (S, T) is
called a medium (on S) if the following ax-

ioms are satisfied:

[Ma] For any two distinct states S and V in S

there is a concise message transforming

S into V .

[Mb] A message which is closed for some state

is vacuous.

Theorem 3.2. A medium is a cubical system.

As the following example demonstrates, the

class of media is a proper subclass of cubical
systems.

Example 3.1. Let (S, T) be a token system
displayed in Figure 3.1. There is no concise
message producing P from S, so this token

system is not a medium. It is easy to verify
that this system is a cubical system.

τ τµT PQS

Figure 3.1: Token system (S, T) with S =
{S, T, P, Q} and T = {τ, τ̃ , µ, µ̃}.

4 A ‘canonical’ example of a

cubical system

A ‘canonical’ example of a medium is the rep-
resenting medium of a well-graded family of

sets (see Definition 7.1) [6, 14, 16]. For cu-
bical systems, similar examples are given by

G-systems.

Definition 4.1. An embedding of a graph
G = (V, E) into a graph G′ = (V ′, E ′) is an

edge preserving map V → V ′. In this case we
also say that G is embeddable into G′. A cube

H(X) on a set X is a graph that has the set
of all finite subsets of X as the set of vertices;

{S, T} is an edge of H(X) if |S 4 T | = 1. A
graph is said to be cubical if it is embeddable

into a cube.
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Definition 4.2. Let G = (F, E) be a con-
nected subgraph of the cube H(X) on a set

X with |X | ≥ 2. A G-system on F is a pair
(F, TG) where TG is a family of transforma-
tions {γx, γ̃x} defined by

Sγx =

{
S ∪ {x}, if {S, S ∪ {x}} ∈ E,

S, otherwise,

Sγ̃x =

{
S \ {x}, if {S, S \ {x}} ∈ E,

S, otherwise,

for all x ∈ ∪F \ ∩F.

Theorem 4.1. A G-system on F is a token
system and, for any x ∈ ∪F \ ∩F, the tokens

γx and γ̃x are mutual reverses.

To show that G-systems are cubical, we be-
gin with a simple observation. Let S0 =

S, S1, . . . , Sn = T be a walk in G. For an
edge {Si−1, Si}, we denote {xi} = Si−1 4 Si,
τi = γxi

if Si = Si−1 ∪ {xi}, and τi = γ̃xi
,

otherwise. Then m = τ1 . . . τn is a step-
wise effective message for S of the G-system

(F, TG). Conversely, a stepwise effective mes-
sage m = τ1 . . . τn of (F, TG) producing a

state T from a state S defines a walk Wm

in G with vertices Si = Sτ0τ1 . . . τn. Thus

there is a one-to-one correspondence between
the stepwise effective messages of a G-system

and the walks in G.

Theorem 4.2. A G-system on F is a cubical
system on the set of states F.

We will show in Section 6 (Theorem 6.1)

that any cubical system is isomorphic to a
G-system. Thus, G-systems are ‘typical’ in-
stances of cubical systems.

5 Tokens and contents

Tokens of a cubical system share many prop-
erties with tokens of a medium (cf. Lemmas

5.1 and 5.2 in [14]).

Lemma 5.1. The following statements hold
for a cubical system (S, T):

(i) ˜̃τ = τ for any τ ∈ T.

(ii) For any two adjacent states S and T
there is a unique token producing T from

S.

(iii) If S, T , and P are three distinct states
such that Sτ = T and Tµ = P , for some

tokens τ and µ, then µ 6= τ and µ 6= τ̃ .

(iv) No token can be a one-to-one function.

Remark 5.1. Property (ii) of Lemma 5.1 is a

very strong property of tokens of a cubical sys-
tem. It asserts that two tokens τ and µ trans-
forming some state S into a different state T

are equal transformations, that is, V τ = V µ
for all V ∈ S.

Let τ be a token of a medium. We define

Uτ = {S ∈ S | Sτ 6= S}.

Note that Uτ 6= ∅, since τ is a token.

Lemma 5.2. Let (S, T) be a cubical systems.

For any given τ ∈ T we have

(i) (Uτ )τ = Uτ̃ .

(ii) Uτ ∩ Uτ̃ = ∅.

(iii) The restriction τ |
Uτ

is a bijection from

Uτ onto Uτ̃ with τ |−1
Uτ

= τ̃ |
U

τ̃
.

Definition 5.1. Let (S, T) be a cubical sys-

tem. For any token τ and any message m, we
define #(τ, m) as the number of occurrences

of τ in m. For any message m, the content of
m is the set C(m) defined by

C(m) = {τ ∈ T | #(τ, m) > #(τ̃ , m)}.

For any state S, the content Ŝ of S is the

union ∪mC(m) taken over the set of all step-
wise effective messages producing the state S.

The two concepts of ‘content’ are different

from their counterparts in media theory. For
instance, the content of a vacuous message of

a cubical system is empty, whereas it is not
empty in media theory. However, the main
results of media theory concerning these con-

cepts are valid for cubical systems. We estab-
lish these results in a series of theorems in the

rest of this section where we assume that a
cubical system (S, T) is given. Note that the

results of Theorems 5.2 and 5.4 are especially
useful in the stochastic part of cubical systems

theory (Section 8).
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Lemma 5.3. If m is a stepwise effective mes-
sage for some state, then

τ ∈ C(m) ⇔ #(τ, m) = #(τ̃ , m) + 1.

Therefore, for any τ ∈ T,

#(τ, m) − #(τ̃ , m) ∈ {−1, 0, 1}.

Lemma 5.4. The content of a state cannot
contain both a token and its reverse.

Theorem 5.1. For any token τ and any state
S of a cubical system, we have either τ ∈ Ŝ

or τ̃ ∈ Ŝ (but not both).

Theorem 5.2. If S and V are two distinct
states, with Sm = V for some stepwise effec-

tive message m, then V̂ \ Ŝ = C(m). There-
fore,

Ŝ 4 V̂ = C(m) + C(m̃),

where + stands for the disjoint union of two
sets. In particular,

Ŝ 4 V̂ = {τ, τ̃},

if Sτ = V .

Lemma 5.5. A stepwise effective message m

is closed if and only if

C(m) = ∅.

Theorem 5.3. For any two states S and V
we have

Ŝ = V̂ ⇔ S = T.

Theorem 5.4. Let m and n be two stepwise

effective messages transforming some state S.
Then

Sm = Sn ⇔ C(m) = C(n).

We conclude this section by comparing two

concepts of contents with their counterparts
in media theory. The two statements of the

next theorem assert that: (a) the content of
a concise message of a medium is the same as

its content in the medium, and (b) contents of
the states of a medium are the same as defined

in media theory.

Theorem 5.5. (i) If m = τ1 . . . τn is a con-
cise message of a medium, then

C(m) = {τ1, . . . , τn}.

(ii) For any state S of a medium, its content
Ŝ is the set of all tokens each of which is con-

tained in at least one concise message produc-
ing S.

6 A representation theorem for

cubical systems

Definition 6.1. The graph G of a cubical sys-
tem (S, T) has S as the set of its vertices; two

vertices are adjacent in G if the corresponding
states are adjacent in (S, T).

Theorem 6.1. Let (S, T) be a cubical system.
There exists a connected subgraph G = (F, E)

of some cube H(X) such that (S, T) is isomor-
phic to the G-system (F, TG) on the family F.

Since cubical systems (S, T) and (F, TG) of
Theorem 6.1 are isomorphic, their graphs are

isomorphic to the graph G.

Theorem 6.2. The graph of a cubical system
is cubical. Conversely, any cubical graph G

defines a cubical system (a G-system).

7 Examples of cubical token

systems

We begin by introducing a class of finite G-
systems that serves as a source of our exam-

ples (cf. [1]).

Definition 7.1. Let F be a family of subsets
of a finite set X with |F| ≥ 2. A set S ∈
F is said to be downgradable if there exists

x ∈ S such that S \ {x} ∈ F. The family
F itself is downgradable if all its nonminimal

sets are downgradable. Likewise, a set S ∈ F

is said to be upgradable if there exists x ∈

X \ S such that S ∪ {x} ∈ F. The family F

itself is upgradable if all but its maximal sets

are upgradable. We say that the family F is
well-graded if the induced subgraph 〈F〉 of the

cube H(X) is an isometric subgraph of H(X)
(cf. [2]).

It is clear that any downgradable family
F of sets containing the empty set is con-

nected, that is, for any two distinct sets
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S, V ∈ F there is a sequence of sets S0 =
S, S1, . . . , Sn = V such that |Si 4 Si+1| = 1.

Likewise, any upgradable family of subsets of
X containing the set X itself is connected.
Let F be any of such families. Then the in-

duced subgraph 〈F〉 of the cube H(X) is con-
nected and therefore defines a cubical system

(an 〈F〉-system).

Example 7.1. Comparability Graphs. A
simple finite graph G = (X, E) is called a

comparability graph [8] if there exists a par-
tial order P on X such that

xy ∈ E ⇔ (x, y) ∈ P or (y, x) ∈ P (7.1)

We denote CG the family of all comparability
graphs on a fixed set X and identify this fam-

ily with the family of all sets of edges of these
graphs. Clearly, CG contains the empty graph

on X . It is known (see, for instance, [2]) that
the family PO of all partial orders on X is
well-graded. As it can be easily seen this fact

implies that the family CG is downgradable
and therefore defines a cubical system.

Figure 7.1: Two comparability graphs with 6 and
8 edges, respectively. The distance between the
two edge sets is 2. There is no comparability graph
on distance 1 from each of these two graphs. Thus
the family CG is not well-graded.

Note that the wellgradedness property of the
family PO does not imply that CG is well-
graded (see the graphs in Figure 7.1).

Example 7.2. Interval Graphs. Interval and

indifference graphs [8] are complements of
comparability graphs arising from interval or-

ders and semiorders, respectively, via rela-
tion (7.1). As the families of all interval or-

ders and all semiorders are well-graded [2]
and both contain the empty relation, the re-
spective families of interval and indifference

graphs are upgradable and both contain the
complete graph on X . Thus we can cast each

of these two families as a cubical system.

Note that the same result holds for any fam-

ily of indifference graphs associated with par-

tial orders satisfying so-called “distinguishing
property” [12].

8 Stochastic cubical token systems

For basic definitions and results of Markov
chain theory the reader is referred to text-

books [7, 10]. Following [5] we consider a
discrete stochastic process arising when ran-

dom events result in occurrences of tokens in
a countable (or finite) cubical system (S, T).

Definition 8.1. A quadruple (S, T, ξ, θ) is a
probabilistic cubical token system if the follow-

ing three conditions hold:

(i) (S, T) is a cubical system.

(ii) ξ : S 7→ ξ(S) is a probability distribution
(the initial distribution) on S.

(iii) θ : τ 7→ θτ is a probability distribution

on T with θτ > 0 for all tokens τ in T.

Selecting an initial state according to the dis-

tribution ξ, and applying occurring tokens
first to the initial state and then to its images

under successive tokens, we obtain a Markov
chain which we denote by (Sn), where n is the

number of trials. The transition matrix P of
this chain is given by the equations

p(S, V ) =

{
θτ if Sτ = V ,

0 otherwise,
for V 6= S,

and

p(S, S) = 1−
∑

V ∈S\{S}

p(S, V ).

Note that 0 < p(S, S) < 1, since, by Axiom
[C2], for any state S of the cubical system

there is a token τ which is effective for S with
θτ > 0.

By applying Theorem 5.2, we can reformulate
the result of the theorem in [18] as follows:

Theorem 8.1. Let S0 be a fixed state in S.

The function

ν(S) =
∏

τ∈bS\bS0

θτ

θτ̃
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is an invariant measure satisfying the detailed
balance equation

ν(S)p(S, V ) = ν(V )p(V, S).

In particular, the chain (Sn) is time re-
versible.

We define

m(S) =
∑

R∈S

∏

τ∈bR\bS

θτ

θτ̃

,

assuming that
∏

τ∈∅
(θτ/θτ̃ ) = 1. Clearly,∑

S ν(S) = m(S0). If m(S0) < ∞, then we
can normalize measure ν and obtain a sta-

tionary distribution

π(S) =
1

m(S0)
ν(S)

satisfying the detailed balance equation. By
this equation and Theorem 5.2, we have

π(R) = π(S)
∏

τ∈bR\bS

θτ

θτ̃

.

Since π is a distribution, we obtain

1 =
∑

R∈S

π(R) = π(S)m(S),

so m(S) < ∞ and π(S) = 1
m(S) for all S ∈ S.

The following theorem summarizes these
properties of the chain (Sn).

Theorem 8.2. The chain (Sn) is irreducible
and aperiodic. If the series

m(S) =
∑

R∈S

∏

τ∈ bR\bS

θτ

θτ̃

converges for some state S, it converges for all
states. In this case the chain (Sn) is ergodic

with a stationary distribution given by

π(S) =
1

m(S)
=

[
∑

R∈S

∏

τ∈bR\bS

θτ

θτ̃

]−1

(8.1)

The distribution π satisfies the detailed bal-
ance equation

π(S)p(S, V ) = π(V )p(V, S).

In particular, the chain (Sn) is time reversible
and m(S) is the mean recurrence time for the

state S.

Note that the condition m(S) < ∞ is also
necessary for the existence of a stationary dis-

tribution π.

If S is a finite set, then m(S) is a finite func-
tion. It is easy to show that in this case (8.1)

can be written in the form

π(S) =

∏
τ∈bS

θτ∑
R∈S

∏
τ∈ bR

θτ

(cf. [5]).

9 Conclusion

We have investigated algebraic and stochastic
properties of cubical systems and shown that
main results of media theory hold for cubical

systems.

The structural properties of message and

state contents (Theorem 5.2), together with
the representation theorem (Theorem 6.1), re-

veal the binary nature of states in both me-
dia and cubical systems theories, which is also

demonstrated by the ‘cubical’ structure of the
corresponding graphs (Theorem 6.2). This
characterization of states is crucial for the

stochastic token theory (Theorem 8.2). Be-
cause any subgraph of a cube is a disjoint

union of connected cubical graphs, it is ap-
propriate to say that cubical systems repre-

sent the most general case of token systems
enjoying the binary structure of their states.

Our treatment of cubical systems as token
systems rather than transition systems is mo-
tivated by examples in Section 7 and connec-

tions with media theory. On the other hand,
general methods of “concurrency” theory [19],

and especially “geometric” models for concur-
rency [17, 9] could bring new elements to cu-

bical token systems theory. In particular, a
topological cubical complex can be associated

with a cubical system in a natural way. Such
complexes were used in the treatment of weak

order families as media in [11, 12].
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