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Abstract

In many works dealing with knowl-
edge representation, there is a tempta-
tion to extend the truth-set with val-
ues expressing ignorance and contra-
diction. This is the case with par-
tial logic and Belnap bilattice logic.
This is also true in interval-valued ex-
tensions of fuzzy sets. This paper
shows that ignorance and contradic-
tion cannot be viewed as additional
truth-values nor processed in a truth-
functional manner.

Keywords: Partial logic, Belnap
logic, interval-valued fuzzy sets.

1 Introduction

From the inception of many-valued logics, there
have been attempts to attach an epistemic fla-
vor to truth degrees. This has led to a very
confusing state of facts, and has probably ham-
pered the development of applications of these
logics. Indeed, belief is never truth-functional
[9]. Fuzzy logic is often attacked because it
is truth-functional. A well-known example is
by Elkan [12] criticising the usual fuzzy con-
nectives max, min, 1—, as leading to an incon-
sistent approach. Looking at these critiques
more closely, it can be seen that the root of
the controversy also lies in a confusion between

degrees of truth and degrees of belief. Fuzzy
logic is not specifically concerned with belief
representation, only with gradual (not black or
white) concepts [16]. However this misunder-
standing seems to come a long way. For in-
stance, a truth-value strictly between true and
false was named “possible” [19], a word which
refers to uncertainty modelling and modalities.
Other logics seem to suffer from this kind of
confusion such as partial logic closely related
to Kleene 3-valued logic, and Belnap’s allegedly
useful four-valued logic. We claim (see [8] for
details) that we cannot consistently reason un-
der incomplete or conflicting information about
propositions by augmenting the set of Boolean
truth-values true and false with epistemic no-
tions like “unknown” or “contradictory”, mod-
eling them as additional genuine truth-values
of their own. Then we consider the case of
truth-functional extensions of fuzzy set alge-
bras like interval-valued fuzzy sets and mem-
bership/nonmembership pairs of Atanassov.

2  Truth vs. belief in classical logic

In a previous paper [10] we pointed out that
while classical (propositional) logic is always
presented as the logic of the true and the false,
this description neglects the epistemic aspects
of this logic. Namely, if a set B of well-formed
Boolean formulae is understood as a set of
propositions believed by an intelligent agent
(a belief base) then the underlying uncertainty
theory is ternary and not binary: it is con-
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ceivable that some proposition is neither be-
lieved nor is disbelieved by a particular agent.
Namely

1. pis believed (or known), which is the case if
B implies p;

2. its negation is believed (or known), which is
the case if B implies —p;

3. neither p nor —p is believed, which is the
case if B implies neither —p nor p.

It is clear that belief refers to the notion of va-
lidity of p in the face of B and is a matter of
consequencehood, not truth-values. In fact, one
can represent belief by means of subsets of pos-
sible truth-values enabled for p by taking propo-
sitions in B for granted. Full belief in p cor-
responds to the singleton {1} (only the truth-
value ”true” is possible); full disbelief in p cor-
responds to the singleton {0} ; the situation of
total uncertainty relative to p for the agent cor-
responds to the set {0,1}. This set is to be un-
derstood disjunctively (both truth-values for p
remain possible due to incompleteness, but only
one is correct). Under such conventions, the
characteristic function of {0,1} is viewed as a
possibility distribution 7 (Zadeh[24]). Namely,
m(0) = (1) = 1 means that both 0 and 1 are
possible. It contrasts with other uses of sub-
sets of truth-values, interpreted conjunctively,
whereby {0, 1} is understood as the simultane-
ous attachment of ”true” and ”false” to p (ex-
pressing a contradiction, see Dunn [11]). This is
another convention based on necessity degrees
N(0)=1-7(1); N(1) = 1—m(0). Then clearly,
N(0) =1 = N(1) indicates a strong contradic-
tion. It must be emphasized that {0}, {1}, and
{0,1} are not truth-values of propositions in B.
They express what can be called epistemic val-
ues whereby the agent believes p, believes —p,
or is ignorant about p respectively.

3 Partial Logic vs. Supervaluations

Partial logic starts from the claim that truth-
values of propositions can be left open, and that

such undefinedness may stem from a lack of in-
formation. This program is clearly in the scope
of theories of uncertainty and partial belief, in-
troduced as well to cope with limited knowl-
edge. Other interpretations of partiality exist,
that are not considered here. From a histori-
cal perspective, the formalism of partial logic
is not so old, but has its root in Kleene [17]’s
three-valued logic, where the third truth-value
expresses the impossibility to decide if a propo-
sition is true or false. The reader is referred to
the dissertation of Thijsse [20] and a survey pa-
per by Blamey [4].

At the semantic level, the main idea of partial
logic is to change interpretations into partial
interpretations (also called coherent situations)
obtained by assigning a Boolean truth-value to
some (but not all) of the propositional variables
forming a set Prop = {a,b,c,...}. A coherent
situation can be represented as any conjunction
of literals pertaining to distinct propositional
variables. Denote by s a situation, S the set of
situations, and V (a, s) the partial function from
Prop x S to {0,1} such that V(a,s) =1if a is
true in s, 0 if a is false in s, and is undefined
otherwise. Then, two relations are defined for
the semantics of connectives, namely satisfies

(Fr) and falsifies (=r):

s Er aif and only if V(s,a) = 1; s Ep aif and
only if V(s,a) = 0;

s =r —pif and only if s |E=p p; s =p —p if and
only if s =1 p;

s E4 pAqif and only if s =, p and s =, g,

sz pVqifand only if s =, p or s =5 q,
forx=1T,F.

In partial logic a coherent situation can be en-
coded as a truth-assignment ts mapping each
propositional variable to the set {0, %, 1}, un-
derstood as a partial Boolean truth-assignment
in {0,1}. Let t5(a) = 1 if atom a appears in
s, 0 if —a appears in s, and ts(a) = % if a
is absent from s. The basic partial logic can
thus be described by means of a three-valued

logic, where 3 (again) means unknown. The
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connectives can be expressed as follows: 1 — x
for the negation, max for disjunction, min for
the conjunction, and max(1 — z,y) for the im-
plication. Note that if ¢;(p) = ts(¢) = 3, then
also ts(pV q) = ts(p N q) = ts(p — @) = 3
in this approach. Besides, this (Kleene-like)
three-valued logic is isomorphic to the set of
non-empty intervals on {0, 1}, using the order-
ing 0 < 1, equipped with the interval extension
of classical connectives, viewing % as the inter-
val {0,1}, the other ones being the singletons

{0} and {1}.

Since  these definitions express truth-
functionality in a three-valued logic, this
logic fails to satisfy all classical tautologies.
But this anomaly stems from the same dif-
ficulty again, that is, no three-element set
can be endowed with Boolean algebra struc-
ture! (nor is the set of non-empty intervals
on {0,1}). A coherent situation s can be
interpreted as a special set A(s) of standard
Boolean interpretations, and can be viewed as
a disjunction thereof. A coherent situation can
be encoded as a formula whose set of models
A(s) can be built just completing s by all
possible assignments of 0 or 1 to variables not
assigned yet. It represents an epistemic state
reflecting a lack of information. If this view
is correct, the equivalence s =7 p V ¢ if and
only if s =p p or s Ep ¢ cannot hold under
classical model semantics. Indeed s |7 p
supposedly means A(s) C [p] and s Fp p
supposedly means A(s) C [-p|, where [p] is
the set of interpretations where p is true. But
while A(s) C [pV ¢] holds whenever A(s) C [p]
or A(s) C [q] holds, the converse is invalid!

This is the point made by Van Fraassen [21]
who first introduced the notion of supervalua-
tion to account for this situation. A supervalu-
ation SV over a coherent situation s is (in our
terminology) a function that assigns, to each
proposition in the language and each coherent
situation s, the super-truth-value SV (p,s) =1
(0) to propositions that are true (false) for all
Boolean completions of s. It is clear that p
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is “super-true” (SV(p,s) = 1) if and only if
A(s) C [p], so that supervaluation theory recov-
ers missing classical tautologies by again giving
up truth-functionality: p VvV —p is always super-
true, but SV (pVg, s) cannot be computed from
SV (p,s) and SV(q,s). The term “super-true”
in the sense of Van Fraassen stands for “cer-
tainly true” in the terminology of possibilistic
belief management in classical logic. The be-
lief calculus at work in propositional logic cov-
ers the semantics of partial logic as a special
case. It exactly coincides with the semantics of
the supervaluation approach. Assuming com-
positionality of epistemic annotations by means
of Kleene three-valued logic provides only an
imprecise approximation of the actual Boolean
truth-values of complex formulas [5].

4 Belnap Four-Valued Logic

Two seminal papers of Belnap [2] [3] propose
an approach to reasoning both with incomplete
and with inconsistent information. It relies on
a set of truth-values forming a bilattice, fur-
ther studied by scholars like Ginsberg and Fit-
ting. Belnap logic, considered as a system for
reasoning under imperfect information, suffers
from the same difficulties as partial logic, and
for the same reason. Indeed one may consider
this logic as using the three epistemic values al-
ready considered in the previous sections (cer-
tainly true, certainly false and unknown), along
with an additional one that accounts for epis-
temic conflicts.

4.1 The contradiction-tolerant setting

Belnap considers an artificial information pro-
cessor, fed from a variety of sources, and capa-
ble of anwering queries on propositions of in-
terest. In this context, inconsistency threat-
ens, all the more so as the information pro-
cessor is supposed never to subtract informa-
tion. So the basic assumption is that the
computer receives information about atomic
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propositions in a cumulative way from outside
sources, each asserting for each atomic propo-
sition whether it is true, false, or being silent
about it. The notion of epistemic set-up is de-
fined as an assignment, of one of four values
denoted T, F, BOTH,NONE, to each atomic
proposition a, b, .. .:

1. Assigning T to a means the computer has
only been told that a is true.

2. Assigning F to a means the computer has
only been told that a is false.

3. Assigning BOTH to a means the computer
has been told at least that a is true by one
source and false by another.

4. Assigning NONE to a means the computer
has been told nothing about a.

In view of the previous discussion, the set
4 = {T,F,BOTH,NONE} coincides with
the power set of {0,1}, namely T = {1}, F =
{0}, the encoding of the other values depending
on the adopted convention: under Dunn Con-
vention, NONE = (); BOTH = {0, 1}. It ex-
presses accumulation of information by sources.
This convention uses Boolean necessity degrees,
ie. BOTH means N(0) = N(1) = 1, NONE
means N(0) = N(1) = 0. With possibil-
ity degree convention, NONE = {0,1};
BOTH = (). These subsets represent con-
straints, i.e., mutually exclusive truth-values,
one of which is the right one. NONE means
m(0) = 7(1) =1, BOTH means 7(0) = 7(1) =
0. Then @ corresponds to no solution.

The approach relies on two orderings in 4.
The information ordering, =, such that
NONE C T — BOTH;NONE C F C
BOTH. This ordering reflects the inclusion re-
lation of the sets (), {0}, {1}, and {0,1}, us-
ing Dunn convention. It intends to reflect the
amount of (possibly conflicting) data provided
by the sources.

The logical ordering, < , according to which
F <BOTH < T and F < NONE < T each
reflecting the truth-set of Kleene’s logic. It cor-
responds to the idea of "less true than”, even if

this may sound misleadingly suggesting a con-
fusion with the idea of graded truth. In fact
F < BOTH < T canonically extends the or-
dering 0 < 1 to intervals on {0, 1}, under Dunn
convention and F < NONE < T does the
same under possibility degree convention.

Then, connectives of negation, conjunction and
disjunction are defined truth-functionally on
the bilattice. The set 4 is isomorphic to 201}
equipped with two lattice structures: The in-
formation lattice, a Scott approximation lat-
tice based on union and intersection of sets of
truth-values using Dunn convention. For in-
stance, in this lattice the maximum of T and F
is BOTH; the logical lattice, based on the
interval extension of min, max and 1— from
{0,1} to 2{%1}\ {B} respectively under Dunn
Convention (for BOTH ) and possibility de-
gree convention (for NONE). These logical
connectives respect the following constraints:
(i)They reduce to classical negation, conjunc-
tion and disjunction on {T,F}; (ii) They are
monotonic w.r.t. ordering ; (iii) p A g = ¢ if
and only if p V ¢ = p; (iv)They satisfy commu-
tativity, associativity of V, A, De Morgan laws.

As a consequence, the restrictions of all con-
nectives to the subsets {T,F,NONE} and
{T,F,BOTH} coincide with Kleene’s three-
valued truth-tables, encoding BOTH and
NONE as % The conjunction and disjunc-
tion operations V and A exactly correspond to
the lattice meet and joint for the logical lattice
ordering. In fact, BOTH and NONE can-
not be distinguished by < and play symmetric
roles in the truth-tables. The major new point
is the result of combining conjunctively and
disjunctively BOTH and NONE. The only
possibility left for such combinations is that
BOTHANONE = F and BOTHVNONE =
T. This looks intuitively surprising but there
is no other choice and this is in agreement with
the information lattice.
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4.2 This is not really how a computer
should think

Belnap’s calculus is an extension of partial logic
to the truth-functional handling of inconsis-
tency. In his paper, Belnap does warn the
reader on the fact that the four values are
not ontological truth-values but epistemic ones.
They are qualifications referring to the state of
knowledge of the agent (here the computer).
The set-representation of Belnap truth-values
after Dunn [11] rather comforts the idea that
these are not truth-values. For instance {1} is
a subset of {0, 1} while 1 is an element thereof.
Interpreting Belnap’s epistemic truth-values as
genuine truth-values comes down to confusing
elements of a set and singletons included in it.

Belnaps explicitly claims that the systematic
use of the truth-tables of 4 “tells us how the
computer should answer questions about com-
plex formulas, based on a set-up represent-
ing its epistemic state”([2], p. 41). However,
since the truth-tables of conjunction and dis-
junction extend the ones of partial logic so as
to include the value BOTH, Belnap’s logic
inherits all difficulties of partial logic regard-
ing the truth-value NONE. Moreover, equal-
ities BOTH A BOTH = BOTH, BOTH Vv
BOTH = BOTH are hardly acceptable when
applied to propositions of the form p and —p.

Another issue is how to interpret the results
BOTHANONE = F and BOTHVNONE =
T. One may rely on bipolar reasoning and ar-
gumentation to defend that when p is BOTH
and g is NONE, p A ¢ should be BOTH A
NONE = F. Suppose there are two sources
providing information, say S1 and S>. Assume
S1 says p is true and Sy says it is false. This
is why p is BOTH. Both sources say noth-
ing about ¢, so ¢ is NONE. So one may
consider that S; would have nothing to say
about p A ¢, but one may legitimately assert
that Sy would say p A g is false. In other
words, p A ¢ is F: one may say that there is
one reason to have p A ¢ false, and no reason
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to have it true. However, suppose two atomic
propositions a and b with E(a) = BOTH and
E(b) = NONE. Then E(a Ab) = F. But
since Belnap negation is such that F(-a) =
BOTH and E(-b) = NONE, we also get
E(—anb) = E(aA—b) = E(—aN-b) = F. Hence
E((anb)V(maAb)V(aAN=b)V (-aA—-b)) =F
that is, E(T) = F which is hardly acceptable
again. See Fox [13] for a related critique.

5 Interval-valued fuzzy sets

IVFs were introduced by Zadeh [26], along
with some other scholars, in the seventies, as
a natural truth-functional extension of fuzzy
sets. Variants of these mathematical objects
exist, under various names (vague sets for in-
stance). The IVF calculus has become popu-
lar in the fuzzy engineering community of the
USA because of many recent publications by
Jerry Mendel and his colleagues. This section
points out the fact that if intervals of member-
ship grades are interpreted as partial ignorance
about precise degrees, the calculus of IVF's suf-
fers from the same flaw as partial logic, of which
it is a many-valued extension.

5.1 Definitions

An interval-valued fuzzy set is defined by an
interval-valued membership function. Inde-
pendently, Atanassov [1] introduced the idea
of defining a fuzzy set by ascribing a mem-
bership function and a non-membership func-
tion separately, in such a way that an element
cannot have degrees of membership and non-
membership that sum up to more than 1. Such
a pair was given the misleading name of “In-
tuitionistic Fuzzy Sets” but corresponds to an
intuition that differs from IVFs, although both
turned out to be mathematically equivalent no-
tions (e.g. G. Deschrijver, E. Kerre [6]).

An IVF is defined by a mapping F' from the uni-
verse U to the set of closed intervals in [0, 1].
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Let F(u) = [Fi(u), F*(u)]. The union, intersec-
tion and complementation of IVE’s is obtained
by canonically extending fuzzy set-theoretic
operations to interval-valued operands in the
sense of interval arithmetic. As such operations
are monotonic, this step is mathematically ob-
vious. For instance, the most elementary fuzzy
set operations are extended as follows, for con-
junction FFNG, disjunction F'UG and negation
F€, respectively:

(min(Fy(w), Gi(w)), min(F* (u), G*(u))];

(max(F(u), Ga(u)), max(F" (u), G*(u))];

Felu) = [1 — F*(u),1 — F.(u)].

IVFs are a special case of L-fuzzy sets in the
sense of Goguen [14], so as a mathematical ob-
ject, it is not of special interest. An IVF is also
a special case of type 2 fuzzy set (also intro-
duced by Zadeh [25]). Of course all connectives
of fuzzy set theory were extended to interval-
valued fuzzy sets and their clones. [FVs are be-
ing studied as specific abstract algebraic struc-
tures [7], and a multiple-valued logic was re-
cently proposed for them, called the triangle
logic [22]. See [23] for a careful study of con-
nectives for type 2 fuzzy sets; their results apply
to the special case of IVFs.

5.2 Paradoxes and their solution

Paradoxes of IVFs are less blatant than those
of Kleene and Lukasiewicz three-valued logics
(when the third truth-value refers to ideas of in-
complete knowledge) because in the latter case,
the lack of excluded-middle law on Boolean
propositions is a striking anomalous feature. In
the case of fuzzy logic, some laws of classical
logic are violated anyway. However, the fact
that interval-valued fuzzy sets have a weaker
structure than the fuzzy set algebra they ex-
tend should act as a warning. Indeed, since
fuzzy sets equipped with fixed connectives have
a given well-defined structure, this structure
should be valid whether the membership grades
are known or not.

For instance, the fact that min(F'(u), F%(u)) <
0.5 should hold whether F(u) is known or
not. This is a weak form of the contra-
diction law. However, applying the truth-
tables of interval-valued fuzzy sets to the case
when F(u) = [0,1] (total ignorance) leads to
min(F(u),1 — F(u)) = [0,1], which means a
considerable loss of information. The same fea-
ture appears with the weak excluded middle
law, where again max(F(u), F¢(u)) = [0,1] is
found, while max(F(u), F¢(u)) > 0.5 should
hold in any case. More generally, if the truth-
value t(p) = F(u) is only known to belong
to some subinterval [a,b] of the unit interval,
the truth-functional calculus yields ¢(p A —p) =
min(F(u),1—F(u)) € [min(a,1 —b), min(b,1 —
a)], sometimes not included in [0, 3].

In fact, treating fuzzy sets with ill-known mem-
bership functions as a truth-functional calculus
of IF'Vs is similar to the paradoxical treatment
of partial logic by means of Kleene’s three-
valued logics, where the third truth value is
interpreted as total ignorance. Kleene’s three
valued logic is more naturally truth-functional
when viewed as a simplified variant of fuzzy
logic, where the third truth-value means half-
true. The loss of classical tautologies then looks
more acceptable. In fact, partial logic is de-
batably construed as an interval-valued truth-
functional extension of classical logic (isomor-
phic to Kleene logic), and is to classical sets
what IVF's are to fuzzy sets.

The basic point is that IVF's lead to a multiple-
valued logic where the truth set [0, 1] is turned
into the set of intervals on [0, 1], i.e. inter-
vals are seen as genuine truth-values. This ap-
proach does not address the issue of ill-known
membership grades, where the latter are nev-
ertheless supposed to be precise, even if out
of reach. Choosing intervals for truth-values is
a matter of adopting a new convention, while
reasoning about ill-known membership grades
does not mean changing the truth set. When
reasoning about ill-known membership grades,
the truth set remains [0, 1] and truth-values
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obey the laws of some multiple-valued cal-
culus, while intervals model epistemic states
about truth-values, just like elements in Bel-
nap 4. A logic that reasons about ill-known
membership grades cannot be truth-functional.
It should handle weighted formulas where the
weight is an interval representing our knowl-
edge about the truth-value of the formula, sim-
ilar to Pavelka’s logic [16], Lehmke’s weighted
fuzzy logic [18], and exploit the algebraic prop-
erties of the underlying logic as constraints.
Interval-weighted formulas are also signed for-
mulas in many-valued logic. Reasoning about
ill-known membership grades is then a mat-
ter of constraint propagation, especially inter-
val analysis, and not only simple interval arith-
metics on connectives. Automated reasoning
methods based on signed formulae in multiple-
valued logics follow this line and turn inference
into optimization problems|[15].

The generic reasoning problem in interval-
valued fuzzy logic is of the following form:
Given a set of weighted many-valued propo-
sitional formulas {p;,[ai,bi]),i = 1,...,n},
find the most narrow interval [a,b] such that
(p, [a,b]) can be deduced. It corresponds to
the following optimization problem: maximize
(resp. minimize) t(p) under the constraints
t(pi) S [CLZ‘, bi],i =1,...,n.

This problem cannot be solved by a truth-
functional interval-valued fuzzy logic. A sim-
pler instance of this problem is the one of find-
ing the membership function of a complex com-
bination of IVFs. It comes down to finding the
interval containing the truth-value of a many-
valued formula, given intervals containing the
truth-values of its atoms. For instance, find-
ing the membership function of F' N F¢ when
F is an IVF comes down to solving for each
element of the universe of discourse the fol-
lowing problem: maximize (resp. minimize)
f(z) = min(z, 1 — z) under the constraint = €
[a, b]. Since the function f is not monotonic, the
solution is obviously not (always) the interval
[min(a, 1 — b), min(b, 1 — a)] suggested by IVF
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connectives, it is as follows: f(z) € [a,b] if b <
0.5; it is [min(a, 1 —b),0.5] if a < 0.5 < b; it is
[1—a,1—10]if a > 0.5. Only the first and the

third case match the IVF connectives solution.

In Lukasiewicz logic, using the bounded sum
and linear product connectives, inferring in the
interval-valued setting comes down to solving
linear programming problems [15]. Especially
the condition FF' N F¢ = () is always trivially
valid using linear product, even if F' is an IFV,
since max(0,x 4+ (1 —x) — 1) = 0.

In conclusion, there is a pervasive confusion be-
tween truth-values and the epistemic values an
agent may use to describe a state of knowl-
edge: the former are compositional by assump-
tion, the latter cannot be consistently so. This
paper suggests that such difficulties appear in
partial logic, Belnap logic, and interval-valued
fuzzy logic. In logical approaches to incom-
pleteness and contradiction, the goal of preserv-
ing tautologies of the underlying logic (classical
or multivalued) should supersede the goal of
maintaining a truth-functional setting. Consid-
ering subsets or fuzzy subsets of a truth-set as
genuine truth-values leads to new many-valued
logics that do not address the issue of uncertain
reasoning on the underlying original logic. Such
“powerset logics” are special cases of lattice-
valued logic that need another motivation than
reasoning under uncertainty. Our critique en-
compasses the truth-functional calculus of type
2 fuzzy sets[23] as well, since it again consid-
ers fuzzy sets of truth-values as truth-values.
In that respect, the meaning of “fuzzy truth-
values” proposed in [25] is sometimes misun-
derstood, as they cannot be at the same time
genuine truth-values and ill-known ones.
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