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Abstract 
 In this paper axioms of parainconsistency as 
well as those of paraconsistent consequence 
have been introduced and their equivalence 
established. 
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1 Introduction 
Paraconsistent logic systems have a long history. 
For an overview one is referred to [1]. This 
paper investigates into the axioms that are to be 
satisfied for a set of formulae to be 
parainconsistent. In the context of classical logic 
it is known what axioms a consistent set fulfils   
[3]. It is also known what axioms are satisfied 
by the consequence relation of classical logic 
[3]. The equivalence between the two sets of 
axioms is also established. So it seems natural to 
investigate into the axioms to be satisfied by the 
consequence relation of paraconsistent logic 
systems. Among the wide variety of such logics 
one common agreement is to do away with 
explosiveness, that is, the feature that if a set of 
well formed formulae entails a wff and its 
negation too, the set does necessarily entail all 
wffs. This is a property of classical logic. It is 
also natural to examine the interconnections 
between the axioms of paraconsistency and 
paraconsistent consequence. To put the task in 
more concrete terms, the main issue is to frame 
the two sets of axioms in such a way that they 
are equivalent as it is in the case of classical 
logic. In this paper two pairs of such sets of 
axioms are presented. 

We have not delved into the philosophical 
significance of these axioms. This paper is 
basically mathematical in nature. However, 
some very interesting insights are thrown into 

the notions that are the fundamental ingredients 
of paraconsistent logic systems. 

Let us first look into the two sets of axioms in 
the classical case. 

Classical consequence axioms: 

As presented in [3], classical notion of 
consequence is a function C: P(F) � P(F) , 
where F is the set of wffs, and P(F) , the power 
set of F, assigning each set of formulae X to its 
consequence set C(X) satisfying, 

C1. X ⊆  C(X) 

C2. If X⊆  Y then C(X)  ⊆  C(Y) 

C3. C(C(X)) = C(X) 

C4. C(X) = ∪ Y⊆ X, Y is finite C(Y) 

C5. α ⊃ β ∈ C(X) iff β ∈ C(X∪{α})   

C6. C({α, ∼α }) = F 

C7. C({α}) ∩ C({∼α}) = C(Φ)  

 

Classical consistency axioms:  

CONS is a unary relation over P(F) satisfying, 

Cons1. If X⊆  Y then Y∈ CONS implies  

            X ∈  CONS 

Cons2. If X ∉ CONS then for some finite subset    

            Y of X, Y ∉ CONS 

Cons3. If X ∈ CONS then either  

            X∪{α} ∈ CONS or X∪{∼α} ∈ CONS 

Cons4.{α, ∼α }∉ CONS 

Cons5. X∪{α, ∼β} ∈ CONS iff   

            X∪{∼(α ⊃β)} ∈ CONS 
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The two sets of axioms are equivalent via the 
following conversion theorems. 

Theorems for conversion:  

(i) Let C be a classical consequence 
operator, postulated by the axioms 
C1- C7. Let CONS be defined by  

             X ∈ CONS iff for any α, 
            {α, ∼α }is not included in 
C(X).Then  
             CONS satisfies all the classical  
             consistency axioms. 
 
 
(ii) Let CONS be a unary relation    
             satisfying classical consistency  
             axioms, Cons1– Cons5. 

                   Let C  be defined by, α ∈ C(X) iff 

                   X∪{∼α}∉ CONS. Then C 

                   satisfies all classical  

                   consequence axioms.   

 

It is also established that if we start from C, 
obtain the CONS by (i) and then from CONS 
obtain C΄ by (ii) then C = C΄. Similar is the case 
if instead of starting with C one starts with 
CONS. 

We shall now observe that similar equivalence 
may be established by taking smaller subsets of 
the two groups of axioms. Particularly, the 
axioms dropped are related with compactness 
(C4 and Cons2) and implication (C5 and 
Cons5). In fact, we have wanted to arrive at the 
bare minimum. It should also be noted that we 
have taken inconsistency axioms now instead of 
consistency axioms. In the context of the present 
paper this change is made for mere convenience. 
But in our other works (as yet unpublished) 
switching over to inconsistency from 
consistency turns out to be essential.  

 

Consequence axioms without implication and 
compactness  

 

Let C: P(F) � P(F) be a mapping, where F is the 
set of wffs, satisfying, 

(C1′) X ⊆  C(X) 

(C2′) If X⊆  Y then C(X)  ⊆  C(Y) 

(C3′) C(C(X)) = C(X) 

(C4′) C(X∪{α}) ∩ C(X∪{∼α}) = C(X) 

(C5′) C({α, ∼α }) = F 

 

Inconsistency axioms without implication and 
compactness  

 

Let INCONS be a unary relation over P(F) 
satisfying 

Incons1. If X⊆  Y then X ∈ INCONS implies  

              Y ∈ INCONS  

Incons2. If X ∪{∼α}∈ INCONS, for each α in 
Y  

               and X ∪Y ∈ INCONS then 

               X ∈   INCONS 

Incons3.{α, ∼α }∈   INCONS  

 

It can be verified that these two modified sets of 
axioms also obey the above mentioned theorems 
for conversion. 

2     An approach for axiomatization of a 
notion of non-explosive consequence: 

2.1It has been mentioned that one of the most 
basic features of the classical notion of 
consequence is its explosiveness i.e. a 
contradictory premise (a formula and its 
negation) yields every formula. In this regard 
paraconsistent logic is non-standard. A logic is 
paraconsistent if its notion of consequence is 
non-explosive i.e. it is not that for any α, 
C({α,∼α})=F or in other words, there is 
some α, such that C({α,∼α})≠F. From the 
definitions, mentioned above, it can be noticed 
that explosiveness condition is a formula-
independent behaviour and in this sense, 
explosiveness condition of a consequence is 
global in character. Whereas non-explosiveness 
is a local property i.e. formula-dependent 
property of a consequence. For some α, 
C({α,∼α})≠ F that means, there may exist 
some β, for which C({β,∼ β})=F. Hence the 
behaviour of a non-explosive consequence 
depends on the formula, under consideration. 
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However, common sense would like to label 
both {α, ~α} and {β, ~ β} as inconsistent sets. 
Usual practice in logic is to define its notion of 
inconsistency in terms of its consequence. Viz,  

a set X is inconsistent if for some α,            
{α,∼ α}⊆ C(X)        ........ (1) 

Note that in standard logics definition of 
inconsistency is equivalent to assuming C(X)= 
F. So it follows in classical case that if        
{α,∼ α}⊆ C(X) for some α, {α,∼ α}⊆ 
C(X) for all α.  

Now, in the context of non-explosiveness let us 
consider two sets X and Y such that {α,∼ α}⊆ 
C(X)and{β,∼β}⊆C(Y),where 
C({α,∼α})≠ F and C({β,∼ β})=F 

By monotonicity and idempotence, for any γ,   
{ γ,∼ γ }⊆  C(Y) but in case of X, there may 
exist some δ, such that { δ,∼ δ }is not included 
in C(X) 

Thus if (1) is taken as the definition criterion for 
inconsistency then both X and Y are inconsistent 
but clearly nature of inconsistency differs. 

It seems that for the set X, α determines the 
inconsistency of X and δ does not. This analysis 
again pushes us towards a notion, relativised 
with respect to formula.  

In this regard our proposal for an adequate 
definition of inconsistency corresponding to a 
non-explosive notion of consequence , rather 
parainconsistency (a notion which is distinct 
from but similar to the notion of inconsistency) 
is ,  

for a set X of formulae and a formula α, (X, α) 
is parainconsistent (i.e. X is inconsistent with 
respect to α) if {α,∼ α}⊆  C(X). 

2.2 In 2.1 we discussed why at all we need to 
think parainconsistency as a relativised notion. 
Let us now think first what would be the 
plausible demands to a notion of 
parainconsistency and then find the 
corresponding notion of consequence.  

ParaINCONS1 axioms:  

Let ParaINCONS1 be a binary relation between 
P(F) and F, postulated by, 

(PI1)1. If α ∈X then  

           (X∪{∼α}, α) ∈ ParaINCONS1 

(PI1)2.If X ⊆Y then (X, α) ∈ ParaINCONS1   

                 implies (Y, α) ∈ ParaINCONS1  

(PI1)3.If for all α ∈Y,  

          (X∪{∼α}, α) ∈ ParaINCONS1 then  

          (X∪Y, β) ∈ ParaINCONS1    

                implies (X, β) ∈ ParaINCONS1 

(PI1)4. For some α, there is some β such that  

           ({α, ∼α},β) ∉ ParaINCONS1 

(PI1)5. (X∪{α},β) ∈ ParaINCONS1 and  

            (X∪{∼α}, β) ∈ ParaINCONS1 imply 

            (X, β) ∈ ParaINCONS1 

(PI1)6. (X, α) ∈ ParaINCONS1 iff  

            (X, ∼α) ∈ ParaINCONS1 

(PI1)7. (X∪{α}, β) ∈ ParaINCONS1 

                  iff (X∪{∼(∼α)}, β) ∈ ParaINCONS1  

 As the name ‘parainconsistency’ suggests itself 
as a notion distinct from but similar to the notion 
of inconsistency, one can easily notice that the 
naturals demands to an inconsistent set are being 
relativised with respect to formula to get hold of 
the notion of parainconsistency. From classical 
standpoint, one can easily ascertain X∪{∼α}as 
an inconsistent set if it is already known that α 
is a member of X. But, in this non-standard 
scenario, one can only ascertain the 
inconsistency of X∪{∼α}with respect to α, 
when α is a member of X. Following the above 
line of thought, other postulates, imposed on 
ParaINCONS1 can be justified easily. But 
incorporation of last two axioms needs to be 
especially justified. 

In characterizing standard notion of 
inconsistency negation plays an important role 
but that turns out to be redundant on account of 
explosiveness. That is, whenever a set yields a 
formula and its negation, it yields every formula 
and conversely. But in determining 
parainconsistency, negation plays an essential 
role. So, in proposing ParaINCONS1 , a 
formula-dependent notion, relation between the 
assertions ‘X is inconsistent with respect to α’ 
and ‘X is inconsistent with respect to ∼α’ need 
to be specified. On the other hand (PI1)7 asserts 
that inconsistency of X∪{α} with respect to β 
implies inconsistency of X∪{∼ ∼α} with 
respect to β and conversely. It is clear that (PI1)7 
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does not follow from (PI1)6, although this seems 
to be a natural expectation to the notion of 
parainconsistency. For the technical reason of 
proving the conversion theorems, given below, 
(PI1)7 is explicitly required along with (PI1)6.  

As the notion of inconsistency and consequence 
are interwoven in classical logic, a similar 
connection is sought for this non-standard 
scenario too and this search gives rise to a 
notion of consequence C: P(F) � P(F) , 
satisfying, 

(PC1)1. X ⊆  C(X) 

(PC1)2. If X⊆  Y then C(X)  ⊆  C(Y) 

(PC1)3. C (C(X)) = C(X) 

(PC1)4. For some α, C({α, ∼α }) ≠ F 

(PC1)5. C(X∪{α}) ∩ C(X∪{∼α}) = C(X) 

(PC1)6. α ∈C( X ) iff ∼(∼α) ∈C( X ) 

(PC1)7. C(X∪{α}) = C(X∪{∼ (∼α)}) 

 

 2.3 Theorems of conversion between non-
explosive consequence and ParaINCONS1  

(i) Let C be an operator on P(F), satisfying  

     (PC1)1 to (PC1)7. Define ParaINCONS1 by, 

     (X, α) ∈ ParaINCONS1 iff {α, ∼α }⊆  C(X).  

     Then ParaINCONS1 will satisfy all (PI1)1 –  

     (PI1)7 axioms 

(ii)Let ParaINCONS1 be a binary relation  

    between P(F) and F, satisfying all (PI1)1-   

    (PI1)7 axioms. Define C  by, α ∈C(X) iff  

    (X∪{∼α}, α) ∈ ParaINCONS1 Then C turns 

    out to be a consequence operator relative to  

    ParaINCONS1 i.e. C satisfies (PC1)1-(PC1)7. 
 

Proof: (i)  

(PI1)1. Let α ∈X then α ∈X∪{∼α}                   
∴ α ∈C(X∪{∼α}) ( by (PC1)1).   

Also  ∼α ∈X∪{∼α} implies ∼α ∈C(X∪{∼α})   
( by (PC1)1). ∴{α, ∼α }⊆  C(X∪{∼α}) 

∴(X∪{∼α}, α) ∈ ParaINCONS1  

 

(PI1)2. Let X ⊆Y and (X, α) ∈ ParaINCONS1   

∴{α, ∼α }⊆  C(X) ⊆  C(Y). 

∴(Y, α) ∈ ParaINCONS1   

 

(PI1)3. Let for all α ∈Y                         
(X∪{∼α}, α) ∈ ParaINCONS1 

∴{α, ∼α }⊆  C(X∪{∼α}). 

Also α ∈C(X∪{α}) , ( by (PC1)1) 

As α belongs to both C(X∪{α}) and 
C(X∪{∼α}), by ((PC1)5  α ∈C(X), i.e  

for all α ∈Y, α ∈C(X) in other words, Y⊆ C(X) 

Also by (PC1)1, X ⊆  C(X) 

∴ X∪Y ⊆  C(X)                                                

∴ C (X∪Y) ⊆  C (C(X)) = C(X) by (PC1)2 and 
(PC1)3.  

Now let (X∪Y, β) ∈ ParaINCONS1              
∴{β, ∼β }⊆  C (X∪Y) ⊆  C(X) 

∴(X, β) ∈ ParaINCONS1 

 

(PI1)4. By (PC1)4. we have, for some α,       
C({α, ∼α }) ≠ F i.e. there is some β such that  

β∉ C({α, ∼α }) and hence{β, ∼β }⊄  C({α, ∼α 
}) 

∴({α, ∼α},β) ∉ ParaINCONS1 

 

(PI1)5. Let (X∪{α},β) ∈ ParaINCONS1 and 
(X∪{∼α}, β) ∈ ParaINCONS1                     
∴{β, ∼β }⊆  C(X∪{α}) and                            
{β, ∼β }⊆  C(X∪{∼α}). Then by ((PC1)5,       
{β, ∼β }⊆  C(X) i.e. (X, β) ∈ ParaINCONS1 

 

(PI1)6. (X, α) ∈ ParaINCONS1   iff                    
{α, ∼α }⊆  C(X) iff  {∼∼α, ∼α }⊆  C(X),            
by (PC1)6   

∴(X, ∼α) ∈ ParaINCONS1 

(PI1)7. (X∪{β}, α) ∈ ParaINCONS1  iff          
{α, ∼α }⊆  C(X∪{β}) = C(X∪{∼ ∼β}) iff 
(X∪{∼ ∼β} , α) ∈ ParaINCONS1   (by (PC1)7)  
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(ii) 

(PC1)1. Let α ∈X                                   
∴(X∪{∼α}, α) ∈ ParaINCONS1        (by (PI1)1) 

∴ α ∈C(X)  

 

(PC1)2. Let  X ⊆Y  

∴ X∪{∼α}⊆Y∪{∼α}, for any α,   
∴(X∪{∼α}, β) ∈ ParaINCONS1 implies 
(Y∪{∼α}, β) ∈ ParaINCONS1  for any β,     
∴In particular for β = α,                      
(X∪{∼α}, α) ∈ ParaINCONS1 implies 
(Y∪{∼α}, α) ∈ ParaINCONS1                         
∴ α∈ C(X) implies α∈ C(Y) i.e. C(X)  ⊆  C(Y) 

 

(PC1)3. Let Y⊆ C(X) i.e. α∈Y implies α∈ C(X) 
∴(X∪{∼α}, α) ∈ ParaINCONS1 (by definition) 
∴(X∪{∼β}∪{∼α}, α) ∈ ParaINCONS1        
(by (PI1)2)  i.e. for all α∈Y        
(X∪{∼β}∪{∼α}, α) ∈ ParaINCONS1         
Then by (PI1)3,                              
(X∪{∼β}∪Y, γ) ∈ ParaINCONS1 implies 
(X∪{∼β}, γ) ∈ ParaINCONS1                       
∴In particular for γ = β,                 
(X∪{∼β}∪Y, β) ∈ ParaINCONS1 implies  
(X∪{∼β}, β) ∈ ParaINCONS1                        
i.e. β∈ C(X∪Y) implies β∈ C(X)         
∴C(X∪Y) ⊆ C(X)     

[As Y⊆ C(X) implies C(X∪Y) ⊆ C(X) iff               
C (C(X)) = C(X), instead of C (C(X)) = C(X) we 
have proved Y⊆ C(X) implies          C(X∪Y) ⊆ 
C(X)]      

 

(PC1)4. By (PI1)4. for some α, there is some β 
such that ({α, ∼α},β) ∉ ParaINCONS1                    

By (PI1)5. we have                                          
({α, ∼α}∪{γ},β) ∈ ParaINCONS1  and               
({α, ∼α}∪{∼γ},β) ∈ ParaINCONS1   imply   
({α, ∼α},β) ∈ ParaINCONS1    for any γ.  

In particular for  γ = β,                                    
({α, ∼α}∪{β},β) ∈ ParaINCONS1  and               
({α, ∼α}∪{∼β},β) ∈ ParaINCONS1   imply   
({α, ∼α},β) ∈ ParaINCONS1        

 But as  ({α, ∼α},β) ∉ ParaINCONS1  either  
({α, ∼α}∪{β},β) ∉ ParaINCONS1  or            
({α, ∼α}∪{∼β},β) ∉ ParaINCONS1    

Case-I  ({α, ∼α}∪{∼β},β) ∉ ParaINCONS1       

∴β∉ C({α, ∼α })  

Case-II ({α, ∼α}∪{β},β) ∉ ParaINCONS1   

implies ({α, ∼α}∪{∼ ∼ β},β) ∉ ParaINCONS1  

(by (PI1)7)                                                  
implies ({α, ∼α}∪{∼ ∼ β},∼β) ∉ ParaINCONS1  

(by (PI1)6)                                                   
∴∼β∉ C({α, ∼α })                                             
∴From I and II we have C({α, ∼α }) ≠ F 

 

(PC1)5. Let β∈ C(X∪{α}) and β∈ C(X∪{∼α}) 
∴(X∪{α}∪{∼β},β))∈ ParaINCONS1     and        
(X∪{∼α}∪{∼β},β))∈ ParaINCONS1      

i.e.(X∪{∼β}∪{ α } ,β)∈ ParaINCONS1     and        
(X∪{∼β}∪{∼ α }, β)∈ ParaINCONS1                      

∴ (X∪{∼β} , β)∈ ParaINCONS1     (by (PI1)5)   

∴β∈ C(X) 

 

(PC1)6. Let α ∈C( X ) iff                                  
(X∪{∼α} , α)∈ ParaINCONS1     iff            
(X∪{ ∼∼∼α} , α)∈ ParaINCONS1  (by (PI1)7)   

iff  (X∪{∼∼∼α} , ∼α)∈ ParaINCONS1                   

(by (PI1)6)   iff                                    
(X∪{∼∼∼α} , ∼∼α)∈ ParaINCONS1                        

(by (PI1)6)  iff   ∼∼α ∈C( X ) 

 

(PC1)7. β∈C( X∪{ α }) iff                            
(X∪{α}∪{∼β},β))∈ ParaINCONS1    iff   
(X∪{∼β}∪{∼∼ α },β))∈ ParaINCONS1         
(by (PI1)7)    iff   β∈C( X∪{∼∼α })  

 

These two notions perfectly match with each 
other. 

 

2.4 Theorem: (i) Let C1  be given. Define 
ParaINCONS1  in terms of C1 . Then the  
operator C2 ,generated from ParaINCONS1 
coincides with C1 
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(ii) Let ParaINCONS1  be given. Define C in 
terms of  ParaINCONS1. This C again generates 
the same ParaINCONS1. 

 

Proof: (i) Let C1  be given. Define ParaINCONS1  

by (X, α) ∈ ParaINCONS1 iff {α, ∼α }⊆  C1 (X) 
and then in terms of ParaINCONS1 define C2  by 
β∈C2 (X) iff (X∪{∼β}, β) ∈ ParaINCONS1 

Now let β∈C1 (X) ∴β∈C1 (X∪{∼β}) by (PC1)2 
Again ∼β∈C1 (X∪{∼β}) by (PC1)1                  
∴{β, ∼β}⊆C1 (X∪{∼β})                                    
∴(X∪{∼β}, β) ∈ ParaINCONS1                                     

∴β∈C2(X)                                                     ∴C1 
(X) ⊆ C2(X) 

Conversely, let β∈C2(X)                                      
∴(X∪{∼β}, β) ∈ ParaINCONS1                                      

∴{β, ∼β}⊆C1 (X∪{∼β})                                    
Also ∴β∈C1 (X∪{β}) by (PC1)1                          
∴β∈C1 (X∪{β}) and β∈C1 (X∪{∼β}) imply      
β∈C1 (X)  by (PC1)5                                      
∴C2 (X) ⊆ C1(X) i.e. C1 (X) = C2(X)  

 

(ii) Let ParaINCONS1  be given. Define C by     
α ∈C(X) iff (X∪{∼α}, α) ∈ ParaINCONS1            

In terms of C let us define ParaINCONS1′ by  
(X, β) ∈ ParaINCONS1′ iff {β, ∼β }⊆  C(X)  

Let (X, α) ∈ ParaINCONS1                                            

∴(X∪{∼α}, α) ∈ ParaINCONS1    by (PI1)2     
∴ α ∈C(X)   

Again (X, α) ∈ ParaINCONS1      implies                                      

(X, ∼α) ∈ ParaINCONS1    by (PI1)6                
∴(X∪{∼∼α}, ∼α) ∈ ParaINCONS1    by (PI1)2    
∴∼α ∈C(X)   ∴ {α , ∼α }⊆C(X)                      
∴(X, α) ∈ ParaINCONS1′  

∴ ParaINCONS1   ⊆  ParaINCONS1′  

Conversely let, (X, α) ∈ ParaINCONS1′           
∴ {α , ∼α }⊆C(X)                                              
Now α ∈C(X)   implies                         
(X∪{∼α}, α) ∈ ParaINCONS1   and ∴∼α 
∈C(X) implies (X∪{∼∼α}, ∼α) ∈ 
ParaINCONS1                  ∴(X∪{∼∼α}, α) ∈ 
ParaINCONS1    ( by (PI1)6)    ∴(X∪{∼α}, α) ∈ 
ParaINCONS1   and                (X∪{∼∼α}, α) ∈ 
ParaINCONS1    imply              (X, α) ∈ 

ParaINCONS1                                                              ∴ 
ParaINCONS1′    ⊆  ParaINCONS1 

i.e. ParaINCONS1   and ParaINCONS1′ coincide 
with each other. 

3     Another approach for axiomatization 
of a non-explosive notion of consequence 
with an operator ′: 
3.1 As is mentioned earlier, to axiomatize 
ParaINCONS1 we need to specify (X, α) ∈ 
ParaINCONS1 iff (X, ∼α) ∈ ParaINCONS1 
which immediately implies (X, α) ∈ 
ParaINCONS1 iff (X, ∼ ∼α) ∈ ParaINCONS1 . 
Thus (PI1)6 together with (PI1)7 demand a sort 
of similar treatment to a formula and its double 
negation. In this new approach we present an 
alternative axiomatization so that there may be a 
case where X is inconsistent with respect to α  
but not with respect to ∼ ∼α. 

3.2 Definition: Let ′ be a function from F to F, 
defined by,    

 α′ = β , if α = ∼β, for some β 

     = ∼α, otherwise 

We now define a different notion of 
Parainconsistency. 

 

3.3 Axioms of ParaINCONS2  and the relative 
notion of consequence with respect to the 
operator ′ : 

ParaINCONS2 axioms: 

Let ParaINCONS2 be a binary relation between 
P(F) and F, postulated by, 

(PI2)1. If α ∈X then   

           (X∪{α′}, α) ∈ ParaINCONS2                                 

(PI2)2. If X ⊆Y then (X, α) ∈ ParaINCONS2           

                   implies (Y, α) ∈ ParaINCONS2                

(PI2)3. If for all α ∈Y,      

           (X∪{α′}, α) ∈ ParaINCONS2 then  

           (X∪Y, β) ∈ ParaINCONS2                              

                implies (X, β) ∈ ParaINCONS2 

(PI2)4. For some α, there is some β such that  

           ({α, α′ }, β) ∉ ParaINCONS2 
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(PI2)5. (X∪{α}, β) ∈ ParaINCONS2 and  

           (X∪{α′}, β) ∈ ParaINCONS2 imply 

           (X, β) ∈ ParaINCONS2 

(PI2)6. (X, α) ∈ ParaINCONS2 iff  

            (X, α′) ∈ ParaINCONS2 

(PI2)7. (X∪{α}, β) ∈ ParaINCONS2 iff  

           (X∪{(α′)′}, β) ∈ ParaINCONS2 

 

Axioms for the notion of consequence 
correspondence to ParaINCONS2 : 

Let C: P(F) � P(F) be a mapping, where F is the 
set of wffs, satisfying, 

(PC2)1. X ⊆  C(X) 

(PC2)2. If X⊆  Y then C(X)  ⊆  C(Y) 

(PC2)3. C (C(X)) = C(X) 

(PC2)4. For some α, C({α, α′ }) ≠ F 

(PC2)5. C(X∪{α}) ∩ C(X∪{α′}) = C(X) 
(PC2)6. α ∈ X iff (α′)′ ∈ X 

(PC2)7. C(X∪{α}) = C(X∪{(α′)′}) 

3.4 Theorems of conversion  

(i) Let C be an operator on P(F), satisfying 
(PC2)1-.(PC2)7.  Define ParaINCONS2 by     

(X, α) ∈ ParaINCONS2 iff {α, α′ }⊆  C(X). 
Then  

ParaINCONS2 will satisfy all (PI2)1 - (PI2)7 
axioms 

(ii)Let ParaINCONS2 be a binary relation 
between P(F) and F, satisfying all (PI2)1-(PI2)7 
axioms. Define C  by, α ∈C(X) iff          
(X∪{α′}, α) ∈ ParaINCONS2. Then C turns out 
to be a consequence operator relative to 
ParaINCONS2  i.e. C satisfies (PC2)1-.(PC2)7 
axioms. 

 

Note: ParaINCONS2  and the relative notion of 
consequence also match with each other in the 
sense, mentioned in section 4.  

4  Inter-relation between the two notions 
of inconsistency, mentioned above: 
Let us start with an operator C, called a 
consequence operator, assigning each set of 
formulae X to a set of formulae C(X), known as 
the consequence set of X. In terms of the 
operator C (without imposing any condition on 
C) let the following relations be defined. 

 

1. A unary relation INCONS over P(F) is 
defined by, X ∈ INCONS iff for some α,  

{α, ∼α }⊆  C(X). 

Note: It does not mean that automatically        
{α, ∼α} is a subset of C(X) for every α. For this 
to hold further axioms on C are required. 

2. A binary relation ParaINCONS1 between P(F) 
and F is defined by, (X, α) ∈ ParaINCONS1 

 iff {α, ∼α }⊆  C(X). 

3. A binary relation ParaINCONS2 between P(F) 
and F is defined by, (X, α) ∈ ParaINCONS2                       

iff {α, α′ }⊆  C(X), where ′ is a function from F 
to F, defined by,  
α′ = β , if α = ∼β, for some β 

    = ∼α, otherwise 

 

Observations:  

(1) For any α, (X, α) ∈ ParaINCONS1 

implies X ∈ INCONS 
(2) If X ∈ INCONS there is some α such 

that (X, α) ∈ ParaINCONS1 
(3) For any α, (X, α) ∈ ParaINCONS2 

implies X ∈ INCONS 
(4) If X ∈ INCONS there is some α such 

that (X, α) ∈ ParaINCONS2 
(5) (X, ∼β) ∈ ParaINCONS1 implies        

(X, ∼(∼β)) ∈ ParaINCONS2 
(6) (X, ∼β) ∈ ParaINCONS2 implies        

(X, β) ∈ ParaINCONS1 
(7) Combining (5) and (6),                       

(X, ∼β) ∈ ParaINCONS1 iff                
(X, ∼(∼β)) ∈ ParaINCONS2 

(8) (X, ∼β) ∈ ParaINCONS2 iff                
(X, β) ∈ ParaINCONS1 , if β is of the 
form ∼γ, for some γ, (by (6) and (5) ) 

(9) If α is not of the form ∼β, then            
(X, α) ∈ ParaINCONS1 iff                  
(X, α) ∈ ParaINCONS2 
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5 Conclusion:  
In this introductory endeavour, a first attempt is 
made to axiomatize the notions of inconsistency 
and consequence of paraconsistent logic 
systems. It is obvious that not all such systems 
possess these properties. We are thankful to 
Graham Priest for mentioning this point through 
a personal communication. We know that there 
are paraconsistent systems that are not 
monotonic or that do not satisfy the cut rule. The 
core property that has been touched upon in this 
work is non-explosiveness. Keeping this core   
intact what other categorizations are possible 
should be our future attempts. 
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