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Abstract

Uninorms are an important general-
ization of triangular norms and tri-
angular conorms. Uninorms allow
the neutral element to lie anywhere
in the unit interval rather than at
zero or one as in the case of a t-norm
and a t-conorm.

Since interval valued fuzzy sets, bi-
fuzzy sets (intuitionistic fuzzy sets)
and L∗-fuzzy sets are equivalent,
therefore in this paper we describe
a generalization of uninorms on L∗.
For example, we discuss the possible
values of the zero element for uni-
norms and of the neutral element for
t-representable uninorms.
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1 Introduction

The triangular norms and conorms play an
important role in the fuzzy set theory. They
are used for the generalization of intersection
and union of fuzzy sets, for extension the com-
position of fuzzy relations and for many other
concepts.

Uninorms are important generalizations of tri-
angular norms and triangular conorms. Uni-
norms allow a neutral element to lie anywhere
in the unit interval rather than at zero or one
as in the case of a t-norm and a t-conorm.

Bifuzzy sets are generalization of fuzzy sets.
Because of this we consider a generalization
of uninorm on the field of bifuzzy set theory.

In Section 2, we put the definition of a
fuzzy set, a bifuzzy set (an intuitionistic fuzzy
set), an interval valued fuzzy set and L-fuzzy
set. Next, we recall the relationship between
them. In Sections 3, we recall the properties
of uninorms in [0, 1]. In section 4, the defi-
nition and properties of uninorms on L∗ are
given. Additionally, we put the description of
t-representable uninorms and we discuss the
possible values of the neutral element and zero
element for these uninorms.

2 Basic definition

First we put the basic definition

Definition 1 (cf. [1]). A bifuzzy set (an in-
tuitionistic fuzzy set) A in a universe X is a
triple

A = {(x, µ(x), ν(x)) : x ∈ X}

where µ, ν : X → [0, 1] and µ(x) + ν(x) ≤ 1,
x ∈ X.

We use the name bifuzzy set instead of the
intuitionistic fuzzy set, because there is no
terminological difficulties with this name (cf.
[11]) and in fact, a bifuzzy set is described by
two fuzzy sets µ and ν.

Definition 2 (cf. [6]). An interval valued
fuzzy set A in a universe X is a mapping A :
X → Int([0, 1]), where Int([0, 1]) denotes the
set of all closed subintervals of [0, 1], i.e. a
mapping which assigns to each element x ∈ X
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the interval [A(x), A(x)], where A(x), A(x) ∈
[0, 1] such that A(x) ≤ A(x).

Definition 3 ([10]). An L-fuzzy set A in a
universe X is a function A : X → L where L
is a lattice.

It was shown in [4] that bifuzzy sets, interval
valued fuzzy sets and L∗-fuzzy sets are equiv-
alent, where

L∗ = {(x1, x2) ∈ [0, 1]2 : x1 + x2 ≤ 1},

(x1, x2) ≤ (y1, y2) ⇔ x1 ≤ y1 and x2 ≥
y2 for all (x1, x2), (y1, y2) ∈ L∗.
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Figure 1: Lattice L∗

Remark 1. The greatest element in L∗ is
1L∗ = (1, 0). The least element in L∗ is
0L∗ = (0, 1).

Definition 4 ([12]). A triangular norm T is
an increasing, commutative, associative oper-
ation T : [0, 1]2 → [0, 1] with a neutral ele-
ment 1.
A triangular conorm S is an increasing, com-
mutative, associative operation S : [0, 1]2 →
[0, 1] with a neutral element 0.

Definition 5 ([5]). A triangular norm T on
L∗ is an increasing, commutative, associative
operation T : (L∗)2 → L∗ with a neutral ele-
ment 1L∗ .
A triangular conorm S on L∗ is an increas-
ing, commutative, associative operation S :
(L∗)2 → L∗ with a neutral element 0L∗ .

Definition 6 ([5]). A t-norm T on L∗ is
called t-representable if there exist a t-norm
T and t-conorm S such that for all x, y ∈ L∗

T (x, y) = (T (x1, y1), S(x2, y2)).

Example 1. The operation

T = (x1y1,min(1, x2 + y2))

is a t-representable t-norm with the product
t-norm T and the  Lukasiewicz t-conorm S.
Example 2. The  Lukasiewicz t-norm TW =
(max(0, x1 + y1 − 1),min(1, x2 + 1 − y1, y2 +
1− x1)) is not t-representable.

3 Uninorms

In this section we put the definition of a uni-
norms in [0, 1] and some properties of these
operations.
Definition 7 ([14]). Operation U : [0, 1]2 →
[0, 1] is called a uninorm if it is commutative,
associative, increasing and has a neutral ele-
ment e ∈ [0, 1].
Theorem 1 ([9]). If a uninorm U has a neu-
tral element e ∈ (0, 1), then there exist a tri-
angular norm T and a triangular conorm S
such that

U(x, y) =
{
T ∗(x, y) if x, y ≤ e,
S∗(x, y) if x, y ≥ e, (1)

where
T ∗(x, y) = ϕ−1 (T (ϕ(x), ϕ(y))),
ϕ(x) = x/e, x, y ∈ [0, e],
S∗(x, y) = ψ−1 (S (ψ(x), ψ(y))),
ψ(x) = (x− e)/(1− e), x, y ∈ [e, 1].

T ∗

S∗min≤U≤max

min≤U≤max

0 e

e

1

1

Figure 2: Structure of uninorms

Lemma 1 (cf.[9]). If U is a uninorm with a
neutral element e ∈ (0, 1) then for all x, y ∈
[0, 1] such that min(x, y) ≤ x, y ≤ max(x, y)
one has min(x, y) ≤ U(x, y) ≤ max(x, y).
Furthermore, U(0, 1) ∈ {0, 1} and U(0, 1) is
the zero element of the operation U .
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If a uninorm is idempotent (U(x, x) = x for
every x ∈ [0, 1]) then we have the following
representation

Theorem 2 (c.f. [13]). Let e ∈ [0, 1]. Op-
eration U is an idempotent uninorm with a
neutral element e iff there exists a decreas-
ing function g : [0, 1] → [0, 1] with g(e) = e,
g(x) = 0 for all x > g(0), g(x) = 1 for all
x < g(1), satisfying for x ∈ [0, 1]

inf{y : g(y) = g(x)} ≤ g2(x)
≤ sup{y : g(y) = g(x)}

(2)
and such that for all x, y ∈ [0, 1]

U(x, y) =



min(x, y) if y < g(x) or
(y = g(x) and
x < g2(x) )

max(x, y) if y > g(x) or
(y = g(x) and
x > g2(x) )

x or y if y = g(x) and
x = g2(x)

(3)
and U is commutative for all points (x, g(x))
such that x = g2(x).
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Figure 3: Example of idempotent uninorm
and function g.

4 Uninorms on L∗

In this section we present results relating to
uninorms on the lattice L∗.

Definition 8 ([6]). Operation U : (L∗)2 →
L∗ is called a uninorm if it is commutative,
associative, increasing and has a neutral ele-
ment e ∈ L∗.

In order to obtain similar results to the ones
for uninorms in [0, 1] we divide lattice into
a few parts and show connections between
them. First, we define the following sets

Ee = {x ∈ L∗ : x ≤ e},
E′e = {x ∈ L∗ : x ≥ e},

D = {x ∈ L∗ : x1 + x2 = 1}.
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Figure 4: Lattice L∗ and sets Ee and E′e

Theorem 3 ([6]). Let e ∈ L∗ \ {0L∗ , 1L∗}. If
e /∈ D, then there does not exist an increasing
bijection Φe from L∗ to Ee such that Φ−1

e is
increasing and there does not exist an increas-
ing bijection Ψe from L∗ to E′e such that Ψ−1

e

is increasing.

Lemma 2 ([6]). Let e ∈ D \ {0L∗ , 1L∗}. The
mapping Φe : L∗ → L∗ defined by Φe(x) =
(e1x1, 1− e1(1− x2)) for all x ∈ L∗ is an in-
creasing bijection from L∗ to Ee such that Φ−1

e

is increasing.
The mapping Ψe : L∗ → L∗ defined by
Ψe(x) = (e1 + x1 − e1x1, (1 − e1)x2) for all
x ∈ L∗ is an increasing bijection from L∗ to
E′e such that Ψ−1

e is increasing.

Theorem 4 ([6]). If a uninorm U has the
neutral element e ∈ D \ {0L∗ , 1L∗}, then there
exist a t-norm T and a t-conorm S such that

U(x, y) =
{ T ∗(x, y) if x, y ≤ e,
S∗(x, y) if x, y ≥ e, (4)

where
T ∗(x, y) = Φe

(T (Φ−1
e (x),Φ−1

e (y)
))
,

x, y ∈ Ee

S∗(x, y) = Ψe

(S (Ψ−1
e (x),Ψ−1

e (y)
))
,

x, y ∈ E′e
.

(5)
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Lemma 3. If U is a uninorm with a neutral
element e ∈ L∗, then for all x, y ∈ L∗ such
that x ≤ e ≤ y one has

x ≤ U(x, y) ≤ y.

Proof. Let x, y ∈ L∗ and x ≤ e ≤ y. Thus
x = U(x, e) ≤ U(x, y) ≤ U(e, y) = y.

Directly from the above results we obtain

Lemma 4. If U is a uninorm with a neutral
element e ∈ L∗, then for all x, y ∈ L∗ such
that x ≤ e ≤ y or y ≤ e ≤ x one has

min(x, y) ≤ U(x, y) ≤ max(x, y).

Remark 2. The analogous lemma to
Lemma 1 for uninorms in L∗ does not exist,
i.e. min(x, y) ≤ U(x, y) ≤ max(x, y)
does not hold for all x, y such that
min(x, y) ≤ e ≤ max(x, y) but it holds
only for all x, y such that x ≤ e ≤ y or
y ≤ e ≤ x.

Lemma 5 ([6]). If U is a uninorm with a
neutral element e ∈ L∗ \ {0L∗ , 1L∗}, then for
all x ∈ L∗ one has

U(0L∗ , 1L∗) = U(U(0L∗ , 1L∗), x).

Lemma 6 ([6]). If U is a uninorm with
a neutral element e ∈ L∗ \ {0L∗ , 1L∗} then
U(0L∗ , 1L∗) = 0L∗ or U(0L∗ , 1L∗) = 1L∗ or
U(0L∗ , 1L∗)‖e (i.e. elements U(0L∗ , 1L∗) and
e are not comparable).

If U(0L∗ , 1L∗) = 0L∗ , then U is called a con-
junctive uninorm on L∗. If U(0L∗ , 1L∗) = 1L∗ ,
then U is called a disjunctive uninorm on L∗.

Example 3. Let Ue1 be the uninorm given
by

Ue1(x, y) =
{

max(x, y) if x, y ∈ [e1, 1],
min(x, y) else,

then for the uninorm

U(x, y) = (Ue1(x1, y1), U1−e1(x2, y2))

one has U(0L∗ , 1L∗) = (0, 0) and U is neither
conjunctive nor disjunctive.

Definition 9 ([6]). A uninorm U is called t-
representable if there exist uninorms U1 and
U2 such that for all x, y ∈ L∗

U(x, y) = (U1(x1, y1), U2(x2, y2)).

Example 4. The uninorm from Example 3
is a t-representable uninorm. Let U be an
arbitrary uninorm. Operation U(x, y) =
(min(U(x1, 1−y2), U(y1, 1−x2)), U(1−x2, 1−
y2)) is not t-representable.

Theorem 5 ([6]). If U is a t-representable
uninorm with a neutral element e ∈ L∗ \
{0L∗ , 1L∗}, then e is of the form e = (e1, e2)
where e1 is a neutral element of the uninorm
U1 and e2 is a neutral element of the uninorm
U2.

Lemma 7. If U is a t-representable uninorm
with a neutral element e ∈ L∗ \ {0L∗ , 1L∗},
then U(0L∗ , 1L∗) = 0L∗ or U(0L∗ , 1L∗) = 1L∗

or U(0L∗ , 1L∗) = (0, 0).

Proof. If U is a t-representable uninorm,
then there exist uninorms U1 and U2

such that, for all x, y ∈ L∗ U(x, y) =
(U1(x1, y1), U2(x2, y2)). Thus, we have four
possibilities:
(a) U1(0, 1) = 0, U2(0, 1) = 0, then
U(0L∗ , 1L∗) = (U1(0, 1), U2(1, 0)) = (0, 0)
(b) U1(0, 1) = 0, U2(0, 1) = 1, then
U(0L∗ , 1L∗) = (U1(0, 1), U2(1, 0)) = (0, 1) =
0L∗

(c) U1(0, 1) = 1, U2(0, 1) = 0, then
U(0L∗ , 1L∗) = (U1(0, 1), U2(1, 0)) = (1, 0) =
1L∗

(d) U1(0, 1) = 1, U2(0, 1) = 1, then
U(0L∗ , 1L∗) = (U1(0, 1), U2(1, 0)) = (1, 1) /∈
L∗. As a result, this case can not hold.

Corollary 1. We cannot use two disjunctive
uninorms for construction of a t-representable
uninorm.

The following open problem arises

Problem 1. Find a counter-example or prove
the following:
If U is a uninorm with a neutral element e ∈
L∗, then U(0L∗ , 1L∗) = 0L∗ or U(0L∗ , 1L∗) =
1L∗ or U(0L∗ , 1L∗) = (0, 0).

1798 Proceedings of IPMU’08



Lemma 8. If U is a t-representable uninorm
with a neutral element e = (e1, e2) then e1 +
e2 ≥ 1.

Proof. Let U be a t-representable uninorm
with a neutral element e, then there exist
uninorms U1 and U2 with neutral elements
e1, e2 respectively, such that e = (e1, e2)
and U(x, y) = (U1(x1, y1), U2(x2, y2)). Tak-
ing x = (e1, 1 − e1), y = (1 − e2, e2) one
has U(x, y) = U((e1, 1 − e1), (1 − e2, e2)) =
(U1(e1, 1−e2), U2(1−e1, e2)) = (1−e2, 1−e1).
Since U(x, y) ∈ L∗, then 1 − e2 + 1 − e1 ≤ 1.
Thus, we have e1 + e2 ≥ 1.

Theorem 6. If U is a t-representable uni-
norm with a neutral element e = (e1, e2), then
e ∈ D.

Proof. Directly from the previous lemma one
has e1 + e2 ≥ 1. Since e = (e1, e2) ∈ L∗, then
e1 + e2 ≤ 1 and consequently e1 + e2 = 1, i.e.
e ∈ D.

The following open problem arises

Problem 2. Find a counter-example or prove
the following:
If U is a uninorm with a neutral element e ∈
L∗, then e ∈ D.

Definition 10. A uninorm U is idempotent
if U(x, x) = x for all x ∈ L∗.
It is easy to see that

Theorem 7. Let U be a t-
representable uninorm given by U(x, y) =
(U1(x1, y1), U2(x2, y2)), where U1 and U2

are uninorm on [0, 1]. A uninorm U is
idempotent iff U1 and U2 are idempotent
uninorm.

Example 5. Let

U(x, y) =
{

min(x, y), if x, y ∈ [0, 1
2 ],

max(x, y) elsewhere.

Operation U(x, y) = (U(x1, y1), U(x2, y2)) is
not a uninorm.

The following open problem arises

Problem 3. Find the relationship between
the functions g1 and g2 (c.f. Theorem 2)
connected with idempotent uninorms U1, U2,

which allow to obtain t-representable idempo-
tent uninorm.
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